This article presents a two-dimensional numerical study of the unsteady laminar flow from a square cylinder in presence of multiple small control cylinders. The cylinders are placed in an unconfined medium at low Reynolds numbers (Re = 100 and 160). Different flow phenomena are captured for the gap spacings (g = s/D, where s is the surface-to-surface distance between the main cylinder and small control cylinders and D is the size of the main cylinder) between 0.25 – 3 and angle of attack (θ) ranging from 300 to 1800. Numerical calculations are performed by using a lattice Boltzmann method. In this paper, the important flow physics of different observed flow patterns in terms of instantaneous vorticity contours visualization, time-trace analysis of drag and lift coefficients and power spectra analysis of lift coefficient are presented and discussed. Drag reduction and suppression of vortex shedding is also discussed in detail and compared with the available experimental and numerical results qualitatively as well as quantitatively. In addition, the mean drag coefficient, Strouhal number, root-mean-square values of the drag and lift coefficients are determined and compared with a single square cylinder without small control cylinders. We found that the drag is reduced 99.8% and 97.6% for (θ, g) = (300, 3) at Re = 100 and 160, respectively.
Numerical simulations are carried out to study the flow around two tandem square cylinders (SC) under the effect of spacing ratio(g/D) and splitter plate length (l/D) for a fixed Reynolds number (Re) = 100. The g/D is varied from 0 to 10 and l/D is varied from 0.5 to 10. The splitter plate length is found to have strong effect on vortex shedding and fluid forces. The maximum reduction in mean drag coefficient is observed at l/D = 8, that is 15% and 78% for upstream and downstream cylinders, respectively. The maximum reduction in root-mean-square value of lift coefficient is found at l/D = 10, that is 99%. The flow pattern at both of these points is steady flow. There is 100% vortex shedding suppression for l/D > 5. The observed flow patterns for flow past tandem cylinders without splitter plate are; single bluff body (SBB), steady flow (SF), quasi-steady flow (QSF), fully developed flow (FDF) and fully developed two-row vortex street flow (FDTRVS) regimes. SBB, QSF and SF regimes were observed in presence of splitter plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.