Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that is emerging as a global threat because of the highly debilitating nature of the associated disease and unprecedented magnitude of its spread. Chikungunya originated in Africa and has since spread across the entire globe causing large numbers of epidemics that have infected millions of people in Asia, the Indian subcontinent, Europe, the Americas, and Pacific Islands. Phylogenetic analysis has identified four different genotypes of CHIKV: Asian, West African, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL). In the absence of well-designed epidemiological studies, the aim of this review article was to summarize the global epidemiology of CHIKV and to provide baseline data for future research on the treatment, prevention, and control of this life-threatening disease.
We demonstrate a graphene-based electro-absorption modulator achieving extraordinary control of terahertz reflectance. By concentrating the electric field intensity in an active layer of graphene, an extraordinary modulation depth of 64% is achieved while simultaneously exhibiting low insertion loss (∼2 dB), which is remarkable since the active region of the device is atomically thin. This modulator performance, among the best reported to date, indicates the enormous potential of graphene for terahertz reconfigurable optoelectronic devices.
We have studied the properties of Si, Ge shallow donors and Fe, Mg deep acceptors in β-Ga2O3 through temperature dependent van der Pauw and Hall effect measurements of samples grown by a variety of methods, including edge-defined film-fed (EFG), Czochralski (CZ), molecular beam epitaxy (MBE), and low pressure chemical vapor deposition (LPCVD). Through simultaneous, self-consistent fitting of the temperature dependent carrier density and mobility, we are able to accurately estimate the donor energy of Si and Ge to be 30 meV in β-Ga2O3. Additionally, we show that our measured Hall effect data are consistent with Si and Ge acting as typical shallow donors, rather than shallow DX centers. High temperature Hall effect measurement of Fe doped β-Ga2O3 indicates that the material remains weakly n-type even with the Fe doping, with an acceptor energy of 860 meV relative to the conduction band for the Fe deep acceptor. Van der Pauw measurements of Mg doped Ga2O3 indicate an activation energy of 1.1 eV, as determined from the temperature dependent conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.