In this paper the Weibull geo metric process model is utilized for the analysis of accelerated life testing under constant stress. By assuming that the lifetimes under increasing stress levels form a geometric process, the ma ximu m likelihood estimates of the parameters and their confidence intervals (CIs) using both asymptotic and parametric bootstrap method are derived. The performance of the estimators is evaluated by a simu lation study with different prefixed parameters. This paper also compares the geometric process model with the traditional log-linear model. A simulation study is also performed to co mpare the performances of the geometric model and the log-linear model.
Accelerated life tests (ALTs) are designed to investigate the lifetime of extraordinarily reliable things by exposing them to increased stress levels of stressors such as temperature, voltage, pressure, and so on, in order to cause early breakdowns. The Nadarajah-Haghighi (NH) distribution is of tremendous importance and practical relevance in many real-life scenarios due to its attractive qualities such as its density function always has a zero mode and its hazard rate function can be increasing, decreasing, or constant. In this article, the NH distribution is considered as a lifetime distribution under the step stress partially accelerated life testing (SSPALT) model with adaptive type II progressively hybrid censored samples. The unknown model parameters and acceleration factors are estimated using maximum likelihood estimation (MLE) method assuming that the impact of stress change in SSPALT is explained by a tampered random variable (TRV) model. The Fisher information matrix, which is based on large sample theory, is also constructed and used to produce the approximate confidence intervals (ACIs). Furthermore, two potential optimum test strategies based on the A and D optimality criteria are evaluated. To investigate the performance of the proposed methodologies and statistical assumptions established in this article, extensive simulations using R software have been conducted. Finally, to further illustrate the suggested approach, a real-world example based on the times between breakdowns for a repairable system has been provided.
In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of developing inferences for the parameters of the log-linear link function. In this paper the geometric process is used for the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution using Fisher information matrix are also obtained. The statistical properties of the parameters and the confidence intervals are illustrated by a Simulation study.
Accelerated life tests (ALTs) are designed to investigate the lifetime of extraordinarily reliable things by exposing them to increased stress levels of stressors such as temperature, voltage, pressure, and so on, in order to cause early breakdowns. The Nadarajah-Haghighi (NH) distribution is of tremendous importance and practical relevance in many real-life scenarios due to its attractive qualities such as its density function always has a zero mode and its hazard rate function can be increasing, decreasing, or constant. In this article, the NH distribution is considered as a lifetime distribution under the step stress partially accelerated life testing (SSPALT) model with adaptive type II progressively hybrid censored samples. The unknown model parameters and acceleration factors are estimated using maximum likelihood estimation (MLE) method assuming that the impact of stress change in SSPALT is explained by a tampered random variable (TRV) model. The Fisher information matrix, which is based on large sample theory, is also constructed and used to produce the approximate confidence intervals (ACIs). Furthermore, two potential optimum test strategies based on the A and D optimality criteria are evaluated. To investigate the performance of the proposed methodologies and statistical assumptions established in this article, extensive simulations using R software have been conducted. Finally, to further illustrate the suggested approach, a real-world example based on the times between breakdowns for a repairable system has been provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.