Autonomous deployment and shape reconfiguration of structures is a crucial field of research in space exploration with emerging applications in the automotive, building and biomedical industries. Challenges in achieving autonomy include: bulky energy sources, imprecise deployment, jamming of components and lack of structural integrity. Leveraging advances in the fields of shape memory polymers, bistability and 3D multi-material printing, we present a 3D printed programmable actuator that enables the autonomous deployment and shape reconfiguration of structures activated though surrounding temperature change. Using a shape memory polymer as the temperature controllable energy source and a bistable mechanism as the linear actuator and force amplifier, the structures achieve precise geometric activation and quantifiable load bearing capacity. The proposed unit actuator integrates these two components and is designed to be assembled into larger deployable and shape reconfigurable structures. First, we demonstrate that the activation of the unit actuator can be sequenced by tailoring each shape memory polymer to a different activation time. Next, by changing the configuration of the actuator, we demonstrate an initially flat surface that transforms into a pyramid or a hyperbolic paraboloid, thus demonstrating a multi-state structure. Load bearing capability is demonstrated for both during activation and in the operating state. arXiv:1711.00452v1 [physics.app-ph] 1 Nov 2017 2/8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.