The Vitamin E in Neuroprotection Study (VENUS) Investigators IMPORTANCE Management of painful diabetic peripheral neuropathy remains challenging. Most therapies provide symptomatic relief with varying degrees of efficacy. Tocotrienols have modulatory effects on the neuropathy pathway and may reduce neuropathic symptoms with their antioxidative and anti-inflammatory activities.OBJECTIVE To evaluate the efficacy of oral mixed tocotrienols for patients with diabetic peripheral neuropathy. DESIGN, SETTING, AND PARTICIPANTSThe Vitamin E in Neuroprotection Study (VENUS) was a parallel, double-blind, placebo-controlled trial that recruited participants from January 30, 2011, to December 7, 2014, with 12 months of follow-up. This trial screened 14 289 patients with diabetes from 6 health clinics and ambulatory care units from 5 public hospitals in Malaysia. A total of 391 patients who reported neuropathic symptoms were further assessed with Total Symptom Score (TSS) and Neuropathy Impairment Score (NIS). Patients 20 years or older with a TSS of 3 or higher and an NIS of 2 or higher were recruited.INTERVENTIONS Patients were randomized to receive 200 mg of mixed tocotrienols twice daily or matching placebo for 12 months. Patients with hyperhomocysteinemia (homocysteine level Ն2.03 mg/L) received oral folic acid, 5 mg once daily, and methylcobalamin, 500 μg thrice daily, in both groups. MAIN OUTCOMES AND MEASURESThe primary outcome was patient-reported neuropathy TSS (lancinating pain, burning pain, paresthesia, and asleep numbness) changes at 12 months. The secondary outcomes were NIS and sensory nerve conduction test result. RESULTSOf 391 eligible patients, 300 were recruited (130 [43.3%] male; mean [SD] age, 57.6 [8.9] years; mean [SD] duration of diabetes, 11.4 [7.8] years) and 229 (76.3%) completed the trial. The TSS changes between the tocotrienols and placebo groups at 12 months (−0.30; 95% CI, −1.16 to 0.56; P = .49) were similar. No significant differences in NIS (0.60; 95% CI, −1.37 to 2.65; P = .53) and sensory nerve conduction test assessments were found between both groups. In post hoc subgroup analyses, tocotrienols reduced lancinating pain among patients with hemoglobin A 1C levels greater than 8% (P = .03) and normohomocysteinemia (homocysteine level <2.03 mg/L; P = .008) at 1 year. Serious adverse events in both groups were similar, except more infections were observed in the tocotrienols group (6.7% vs 0.7%, P = .04). Results reported were of modified intention-to-treat analyses.CONCLUSIONS AND RELEVANCE Supplementation of oral mixed tocotrienols, 400 mg/d for 1 year, did not improve overall neuropathic symptoms. The preliminary observations on lancinating pain among subsets of patients require further exploration.
Abstract. Amphotericin B (AmB) is poorly absorbed from the gastrointestinal tract. Recent studies have suggested enhanced drug absorption from solid lipid nanoparticles (SLN). Little is known of the fate of AmB absorption within the gastrointestinal tract, and no gastrointestinal transit study has yet been performed on AmB-containing nano-formulations. We aimed to investigate the effect of food on the gastrointestinal transit properties of an AmB-containing SLN in rats. Three SLNs containing AmB, paracetamol, or sulfasalazine were formulated using cocoa butter and beeswax as lipid matrices and simultaneously administered orally to Sprague-Dawley rats. Paracetamol and sulfapyridine were used as marker drugs for estimating gastric emptying and cecal arrival, respectively. The pharmacokinetic data generated for paracetamol and sulfapyridine were used in estimating the absorption of the AmB SLNs in the small and large intestines, respectively. A delayed rate of AmB absorption was observed in the fed state; however, the extent of absorption was not affected by food. Specifically, the percentages of AmB absorption during the fasted state in the stomach, small intestine, and colon were not significantly different from absorption within the respective regions in the fed state. In both states, however, absorption was highest in the colon and appeared to be a combination of absorption from the small intestine plus absorption proper within the colon. The study suggests that AmB SLN, irrespective of food status, is slowly but predominantly taken up by the lymph, making the small intestine the most favorable site for the delivery of the AmB SLNs.
Self-emulsifying drug delivery systems (SEDDS) can improve the oral bioavailability of poorly water-soluble drugs. Solid self-emulsifying drug delivery systems (s-SEDDS) offer several advantages including improved drug stability, ease of administration, and production. Most compounds employed in developing s-SEDDS are solid in nature, with a high amount of surfactants added. The aim of this study was to develop an s-SEDDS using a tocotrienol-rich fraction (TRF) as the model liquid active substance via a simple adsorption method. The solid formulation was developed using magnesium aluminosilicate as the carrier with 70% TRF and 30% surfactants (poloxamer and Labrasol®). The formulation showed good self-emulsification efficiency with stable emulsion formed, excellent powder flowability, and small emulsion droplet size of 210–277 nm. The s-SEDDS with combined surfactants (poloxamer and Labrasol®) showed a faster absorption rate compared to preparations with only a single surfactant and enhanced oral bioavailability (3.4–3.8 times higher) compared to the non-self-emulsifying oily preparation when administered at a fasted state in rats. In conclusion, an s-SEDDS containing a high amount of TRF was successfully developed. It may serve as a useful alternative to a liquid product with enhanced oral bioavailability and the added advantage of being a solid dosage form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.