SummaryThe Escherichia coli arginine repressor (ArgR) controls expression of the arginine biosynthetic genes and acts as an accessory protein in Xer site-specific recombination at cer and related plasmid recombination sites. The hexameric wild-type protein shows L-arginine-dependent DNA binding. In this work, ArgR mutants that are defective in trimer-trimer interactions and bind DNA as trimers in an L-arginine-independent manner are isolated and characterized. Whereas the wild-type ArgR hexamer exhibits high-affinity binding to two repeated ARG boxes separated by 3 bp (each ARG box containing two identical dyad symmetrical 9 bp half-sites), the trimeric mutants bind to and footprint three adjacent half-sites of this 'idealized' substrate. Trimeric ArgR is impaired in its ability to repress the arginine biosynthetic genes and in Xer site-specific recombination. In the absence of L-arginine, residual wild-type ArgR-binding occurs as trimers. The binding of an N-terminal 77-amino-acid DNA-binding domain to idealized ARG boxes is also characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.