Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.
Venetoclax, a potent and selective BCL2 inhibitor, synergizes with endocrine therapy in preclinical models of ER-positive breast cancer. Using a phase Ib 3 + 3 dose-escalation and expansion study design, 33 patients with ER and BCL2-positive metastatic disease (mean prior regimens, 2; range, 0–8) were treated with daily tamoxifen (20 mg) and venetoclax (200–800 mg). Apart from uncomplicated “on-target” lymphopenia, no dose-limiting toxicities or high-grade adverse events were observed in the escalation phase (15 patients), and 800 mg was selected as the recommended phase II dose (RP2D). In the expansion phase (18 patients), few high-grade treatment-related adverse events were observed. For 24 patients treated at the RP2D, the confirmed radiologic response rate was 54% and the clinical benefit rate was 75%. Treatment responses were preempted by metabolic responses (FDG-PET) at 4 weeks and correlated with serial changes in circulating tumor DNA. Radiologic responses (40%) and clinical benefit (70%) were observed in 10 patients with plasma-detected ESR1 mutations. Significance: In the first clinical study to evaluate venetoclax in a solid tumor, we demonstrate that combining venetoclax with endocrine therapy has a tolerable safety profile and elicits notable activity in ER and BCL2-positive metastatic breast cancer. These findings support further investigation of combination therapy for patients with BCL2-positive tumors. See related commentary by Drago et al., p. 323. This article is highlighted in the In This Issue feature, p. 305
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.