Changes in the levels of polyamines are correlated with the activation or repression of developmental response pathways, but the role of polyamine transporters in the regulation of polyamine homeostasis and thus indirectly gene expression, has not been previously addressed. Here we show that the A. thaliana and rice transporters AtPUT5 and OsPUT1 were localized to the ER, while the AtPUT2, AtPUT3, and OsPUT3 were localized to the chloroplast by transient expression in N. benthamiana. A. thaliana plants that were transformed with OsPUT1 under the control the PUT5 promoter were delayed in flowering by 16days. In contrast, put5 mutants flowered four days earlier than WT plants. The delay of flowering was associated with significantly higher levels of spermidine and spermidine conjugates in the leaves prior to flowering. A similar delay in flowering was also noted in transgenic lines with constitutive expression of either OsPUT1 or OsPUT3. All three transgenic lines had larger rosette leaves, thicker flowering stems, and produced more siliques than wild type plants. In contrast, put5 plants had smaller leaves, thinner flowering stems, and produced fewer siliques. Constitutive expression of PUTs was also associated with an extreme delay in both plant senescence and maturation rate of siliques. These experiments provide the first genetic evidence of polyamine transport in the timing of flowering, and indicate the importance of polyamine transporters in the regulation of flowering and senescence pathways.
Discovery of therapeutic avenues to provide the benefits of exercise to patients with enforced sedentary behavior patterns would be of transformative importance to health care. Work in model organisms has demonstrated that benefits of exercise can be provided to stationary animals by daily intermittent stimulation of adrenergic signaling. Here, we examine as a proof of principle whether exposure of human participants to virtual reality (VR) simulation of exercise can alter sympathovagal balance in stationary humans. In this study, 24 participants performed 15 minutes of cycling exercise at standardized resistance, then repeated the exercise with a virtual reality helmet that provided an immersive environment. On a separate day, they each controlled a virtual environment for 15 minutes to simulate exercise without actual cycling exercise. Response to each treatment was assessed by measuring heart rate (HR), norepinephrine, and heart rate variability, and each participant's response to virtual exercise was compared internally to his/her response to the actual cycling. We found that neither post-exercise norepinephrine nor post-exercise HR was significantly increased by VR simulation. However, heart rate variability measured during virtual exercise was comparable to actual cycling in participants that engaged in moderate exercise, but not in those that engaged in high-intensity exercise. These findings suggest that virtual exercise has the potential to mimic some effects of moderate exercise. Further work will be needed to examine the longitudinal effects of chronic exposure to VR-simulated exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.