The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study, we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a 60Cobalt source. Thirty minutes following exposure, we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs, there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24-hr period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17), we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types. © 2011 International Society for Advancement of Cytometry
Accurate and rapid methods for the detection of DNA damage foci in eukaryotic cells are central to DNA repair studies, which identify differences in DNA repair capacity in cell lines. Such assays have been important in delineating mechanisms of DNA repair in human cells. Previously we were the first to demonstrate the use of imaging flow cytometry for the detection of γ‐H2AX foci in cells exposed to ionizing radiation causing the induction of DNA strand breaks. In this report we extend these studies and show an enhancement of foci quantitation and image resolution using next generation imaging flow cytometry with the Amnis ImagestreamX Mark II. We demonstrate using cell lines derived from normal individuals, and DNA double strand break repair defective cells that the number of foci observed is significantly increased when using 60× as compared to 40× magnification. Also, foci numbers and resolution is further increased with the application of the focus stacking (Extended Depth of Field–EDF) capacity activated. This report represents the first such demonstration of multimagnification and EDF for the enhanced quantitation of DNA damage in cells and provides a level of resolution, which near matches in situ microscopy methods for the detection of γ‐H2AX foci. © 2015 The Authors. Published by Wiley Periodicals Inc. on behalf of ISAC.
A novel treatment for cancer patients with homozygous deletions of BRCA1 and BRCA2 is to use drugs that inhibit the enzyme poly(ADP-ribose) polymerase (PARP). Specific inhibition of PARP-1 can induce synthetic lethality in irradiated cancer cells while theoretically leaving normal tissue unaffected. We recently demonstrated in a cell survival assay that lymphoblastoid cells with mono-allelic mutations of BRCA1 were hypersensitive to gamma radiation in the presence of the PARP-1 inhibitor Olaparib compared to normal cells and mono-allelic BRCA2 cells. To determine if the enhanced radiation sensitivity was due to a persistence of DNA strand breaks, we performed γ-H2AX foci analysis in cells derived from two normal individuals, three heterozygous BRCA1 and three heterozygous BRCA2 cell lines. Cells were exposed to 2 Gy gamma radiation in the presence or absence of 5 µM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. In all lymphoblastoid cells treated with 2 Gy gamma radiation, there was a predictable induction of DNA strand breaks, with a modest but significant retention of foci over 24 hours in irradiated cells treated with Olaparib (ANOVA P < 0.05). However, in mono-allelic BRCA1 cells, there was a failure to fully repair DNA double-strand breaks (DSB) in the presence of Olaparib, evidenced by a significant retention of foci at 24 hours' post irradiation (t-Test P < 0.05). These data show that the cellular hypersensitivity of mono-allelic BRCA1 lymphoblastoid cells to gamma radiation in the presence of the Olaparib is due to the retention of DNA DSB. These data may indicate that patients with inherited mutations in the BRCA1 gene treated with radiotherapy and PARP-1 inhibitors may experience elevated radiation-associated normal tissue toxicity.
The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer.Our previous work showed that the PARP-1 inhibitor Olaparib causes both hypersensitivity of BRCA1+/- cells following exposure to gamma radiation due to the persistence of DNA strand breaks in cells, measured by the DNA damage biomarker γ-H2AX. Therefore dual treatment of cancers with radiotherapy and PARP1 inhibition may lead to cases of increased normal tissue toxicity in cancer patients.In this study we exposed two normal lymphoblastoid cell lines and three heterozygous BRCA1 lymphoblastoid cell lines to the PARP-1 inhibitor Olaparib and gamma radiation and after measured BRCA1 protein expression and apoptosis levels following treatment. BRCA1 protein foci analysis was performed on cells exposed to 2 Gy radiation in the presence or absence of 5 μM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. Exposing normal and BRCA1+/- cells to Olaparib followed by gamma radiation results in a dramatic change in BRCA1 protein foci expression, with a significant reduction in BRCA1 protein expression observed in the heterozygote cells, together with an increase in apoptosis levels in these cells.In conclusion, combining PARP1 inhibitors with radiotherapy in treating of BRCA1-related cancers has clinical relevance, however this study and our previous publications serve to highlight the potential problems of increased side effects in these scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.