Purpose: In this study, we have examined the antitumor effects of chloroform extract of Angelica sinensis (AS-C), a traditional Chinese medicine, on glioblastoma multiforme (GBM) brain tumors in vitro and in vivo. Experimental Design: In vitro, GBM cells were treated with AS-C, and the cell proliferation, changes in distributions of cell cycle, and apoptosis were determined. In vivo, human DBTRG-05MG and rat RG2 GBM tumor cells were injected s.c. or i.c. and were treated with AS-C. Effects on tumor growth were determined by tumor volume, magnetic resonance imaging, survival, and histology analysis. Results: The AS-C displays potency in suppressing growth of malignant brain tumor cells without cytotoxicity to fibroblasts. Growth suppression of malignant brain tumor cells byAS-C results from cell cycle arrest and apoptosis. AS-C can up-regulate expression of cdk inhibitors, including p21, to decrease phosphorylation of Rb proteins resulting in cell arrest at the G 0 -G 1 phase for DBTRG-05MG and RG2 cells. The apoptosis-associated proteins are dramatically increased and activated in DBTRG-05MG cells and RG2 cells byAS-C but RG2 cells without p53 protein expression. In vitro results showed AS-C triggered both p53-dependent and p53-independent pathways for apoptosis. In in vivo studies, AS-C not only can suppress growths of malignant brain tumors of rat and human origin but also shrink the volumes of in situ GBM, significantly prolonging survivals. Conclusions: The in vitro and in vivo anticancer effects of AS-C indicate that it has sufficient potential to warrant further investigation and development as a new anti^brain tumor agent.
The natural compound n‐butylidenephthalide (BP), which is isolated from the chloroform extract of Angelica sinensis, has been investigated for its antitumoral effects on glioblastoma multiform (GBM) brain tumors both in vitro and in vivo. To determine the mechanism of BP‐induced growth arrest and apoptosis, we examined BP‐induced changes in gene expression by microarray screening using human GBM brain tumor cells. This analysis identified several BP‐inducible genes, including the nuclear receptors NOR‐1, Nurr1, and Nur77. Among these genes, Nur77 is particularly interesting because it plays an important role in the apoptotic processes in various tumor cell lines. BP was able to increase Nur77 mRNA and protein expression in a time‐dependent manner. After BP treatment in GBM 8401 cells, Nur77 translocated from the nucleus to the cytoplasm, the cytochrome c was released from the mitochondria, and caspase 3 became activated. Furthermore, using Nur77 promoter‐luciferase assay, BP increased Nur77 was AP1 related. Inhibition of BP‐induced Nur77 expression by Nur77 short interfering RNA blocked BP‐induced apoptosis in GBM 8401 cells, suggesting that the induction of Nur77 negatively affected GBM 8401 cell survival. In summary, our results suggest that up‐regulation of Nur77 may explain the antitumoral activity of BP in brain tumor cells.
N-Butylidenephthalide (BP), isolated from the chloroform extract of Angelica sinensis, has been examined for its antitumor effects on glioblastoma multiforme brain tumors; however, little is known about its antitumor effects on hepatocellular carcinoma cells. Two hepatocellular carcinoma cell lines, HepG2 and J5, were treated with either N-butylidenephthalide or a vehicle, and cell viability and apoptosis were evaluated. Apoptosis-related mRNA and proteins expressed, including orphan receptor family Nurr1, NOR-1, and Nur77, were evaluated as well as the effect of N-butylidenephthalide in an in vivo xenograft model. N-Butylidenephthalide caused growth inhibition of both the cell lines at 25 g/ml. Furthermore, N-butylidenephthalide-induced apoptosis seems to be related to Nur77 translocation from nucleus to cytosol, which leads to cytochrome c release and caspase-3-dependent apoptosis. N-Butylidenephthalide-related tumor apoptosis was associated with phosphatidylinositol 3-kinase/protein kinase B (AKT)/glycogen synthase kinase-3 rather than the mitogen-activated protein kinase or protein kinase C pathway. Blockade of AKT activation enhanced proliferation inhibition and the induction of phosphor-Bcl-2 and Nur77 proteins. Besides, the increasing apoptosis by BP via transfection wild-type cAMP-response element-binding protein (CREB) into tumor cell was suppressed by dominant phosphorylation site mutation of CREB. This finding suggested CREB pathway was also partly involved in tumor apoptosis caused by BP. Administration of N-butylidenephthalide showed similar antitumoral effects in both HepG2 and J5 xenograft tumors. N-Butylidenephthalide induced apoptosis in hepatocellular carcinoma cells, both in vitro and in vivo, suggesting a potential clinical use of this compound for improving the prognosis of hepatocellular carcinoma cells.Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide. The main curative therapies for cancer are surgery and radiation, which, in general, are only successful if the cancer is diagnosed at an early stage. CurThis work was supported National Science Council of the Republic of China
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.