Adipose-derived stem cells (ADSCs) are easy to harvest and have the ability for self-renewal and to differentiate into various cell types, including those of the hepatic lineage. Studies on the use of ADSCs for liver transplantation are, however, limited. The objective of this study was to investigate the feasibility of using human ADSCs and to better understand their mechanism of action for the repair of liver damage in a thioacetamide (TAA)-induced model of chronic liver damage in the rat. To induce liver damage, 200 mg/kg TAA was injected intraperitoneally into Wistar rats every 3 days for 60 days. For cell therapy, 1 × 10 6 human ADSCs suspended in 300 ml of phosphate-buffered saline were transplanted into each experimental rat by direct liver injection. Immunohistochemistry showed that the transplanted ADSCs differentiated into albumin-and a-fetoproteinsecreting liver-like cells 1 week after transplantation. In addition, liver function recovered significantly, as determined by biochemical analyses that analyzed total bilirubin, prothrombin time, and albumin levels. The Metavir score, derived from histopathological analysis, also showed a significant decrease in liver fibrosis and inflammatory activity after ADSC transplantation. Finally, we found a reduction in the expression of a-smooth muscle actin, a marker of hepatic stellate cells, which produce collagen fiber, and an increase in the expression of matrix metalloproteinase-9, which degrades collagen fiber, after ADSC transplantation. These findings are consistent with abrogation of liver fibrosis in the ADSC therapy group. Consequently, these results suggest that ADSC transplantation may facilitate recovery from chronic liver damage and thus may have clinical applications.
The natural compound n‐butylidenephthalide (BP), which is isolated from the chloroform extract of Angelica sinensis, has been investigated for its antitumoral effects on glioblastoma multiform (GBM) brain tumors both in vitro and in vivo. To determine the mechanism of BP‐induced growth arrest and apoptosis, we examined BP‐induced changes in gene expression by microarray screening using human GBM brain tumor cells. This analysis identified several BP‐inducible genes, including the nuclear receptors NOR‐1, Nurr1, and Nur77. Among these genes, Nur77 is particularly interesting because it plays an important role in the apoptotic processes in various tumor cell lines. BP was able to increase Nur77 mRNA and protein expression in a time‐dependent manner. After BP treatment in GBM 8401 cells, Nur77 translocated from the nucleus to the cytoplasm, the cytochrome c was released from the mitochondria, and caspase 3 became activated. Furthermore, using Nur77 promoter‐luciferase assay, BP increased Nur77 was AP1 related. Inhibition of BP‐induced Nur77 expression by Nur77 short interfering RNA blocked BP‐induced apoptosis in GBM 8401 cells, suggesting that the induction of Nur77 negatively affected GBM 8401 cell survival. In summary, our results suggest that up‐regulation of Nur77 may explain the antitumoral activity of BP in brain tumor cells.
N-Butylidenephthalide (BP), isolated from the chloroform extract of Angelica sinensis, has been examined for its antitumor effects on glioblastoma multiforme brain tumors; however, little is known about its antitumor effects on hepatocellular carcinoma cells. Two hepatocellular carcinoma cell lines, HepG2 and J5, were treated with either N-butylidenephthalide or a vehicle, and cell viability and apoptosis were evaluated. Apoptosis-related mRNA and proteins expressed, including orphan receptor family Nurr1, NOR-1, and Nur77, were evaluated as well as the effect of N-butylidenephthalide in an in vivo xenograft model. N-Butylidenephthalide caused growth inhibition of both the cell lines at 25 g/ml. Furthermore, N-butylidenephthalide-induced apoptosis seems to be related to Nur77 translocation from nucleus to cytosol, which leads to cytochrome c release and caspase-3-dependent apoptosis. N-Butylidenephthalide-related tumor apoptosis was associated with phosphatidylinositol 3-kinase/protein kinase B (AKT)/glycogen synthase kinase-3 rather than the mitogen-activated protein kinase or protein kinase C pathway. Blockade of AKT activation enhanced proliferation inhibition and the induction of phosphor-Bcl-2 and Nur77 proteins. Besides, the increasing apoptosis by BP via transfection wild-type cAMP-response element-binding protein (CREB) into tumor cell was suppressed by dominant phosphorylation site mutation of CREB. This finding suggested CREB pathway was also partly involved in tumor apoptosis caused by BP. Administration of N-butylidenephthalide showed similar antitumoral effects in both HepG2 and J5 xenograft tumors. N-Butylidenephthalide induced apoptosis in hepatocellular carcinoma cells, both in vitro and in vivo, suggesting a potential clinical use of this compound for improving the prognosis of hepatocellular carcinoma cells.Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide. The main curative therapies for cancer are surgery and radiation, which, in general, are only successful if the cancer is diagnosed at an early stage. CurThis work was supported National Science Council of the Republic of China
Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.