SummaryChronic myeloid leukaemia (CML) arises following transformation of a haemopoietic stem cell (HSC) by protein-tyrosine kinase BCR-ABL1. Direct inhibition of BCR-ABL1 kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSC), which maintain CML. LSC are independent of BCR-ABL1 for survival, providing a rationale to identify and target kinase-independent pathways. Here we show using proteomics, transcriptomics and network analyses, that in human LSC aberrantly expressed proteins, in both imatinib-responder and non-responder patients are modulated in concert with p53 and c-Myc regulation. Perturbation of both p53 and c-Myc, not BCR-ABL1 itself, leads to synergistic kill, differentiation and near elimination of transplantable human LSC in mice, whilst sparing normal HSC. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSC can be eradicated.
The purpose of this study was to determine if MnSO 4 /doxorubicin (DOX) loaded liposomes could be used for in vivo monitoring of liposome concentration distribution and drug release using MRI. In vitro results show that T 1 shortening correlates with MnSO 4 concentration. Using a temperature-sensitive liposome formulation, it was found that MnSO 4 release significantly shortened T 1 . This feature, therefore, suggests that content release can also be measured with these MnSO 4 -loaded liposomes. The feasibility of monitoring this drug delivery and release-imaging agent was shown in a murine tumor model. Upon tumor heating, nonthermally sensitive liposomes selectively but heterogeneously accumulated in the tumor region. The thermally sensitive liposomes showed a clear pattern of accumulation at the periphery of the tumor, concordant with the release temperature of this formulation (39 -40°C). This liposome contrast agent has potential for use with hyperthermia by providing individualized monitoring of tissue drug concentration distribution during or after treatment. This would allow for: 1) modification of treatment variables to improve the uniformity of drug delivery, and 2) provide a means to select patients most likely to benefit from this liposomal drug treatment. Additionally, the drug-loading method used for this liposome is applicable to a wide range of drugs, thereby broadening its applicability. The method is also applicable to other liposomal formulations with triggered release mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.