The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt‐tolerant among the investigated cultivars, GOAL, HD‐2967, PBW‐17, PBW‐343, PBW‐550, and WH‐1105 when screened for tolerance to 100 mM NaCl. The application of 100 μM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress‐induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic‐N use efficiency and photosynthesis in plants. The application of 50 μM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin‐mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.
Phytohormones have a role in stress adaptation. The major mechanism underlying the role of exogenously-sourced nitric oxide (NO; as sodium nitroprusside, SNP: 50.0 µM) and salicylic acid (SA; 0.5 mM) in the presence of 2.0 mM SO4−2 was assessed in heat stress (HS; 40 °C for 6 h daily for 15 days) tolerance in wheat (Triticum aestivum L. cv. HD-3226). The cultivar HD-3226 possessed high photosynthetic sulfur use efficiency (p-SUE) among the six cultivars screened. Plants grown under HS exhibited an increased content of reactive oxygen species (ROS; including superoxide radical and hydrogen peroxide) and extent of lipid peroxidation with a consequent reduction in photosynthesis and growth. However, both NO and SA were found to be protective against HS via enhanced S assimilation. Their application reduced oxidative stress and increased the activity of antioxidant enzymes. NO or SA supplementation along with S under HS recovered the losses and improved photosynthesis and growth. The use of SA inhibitor (2-aminoindane-2-phosphonic acid; AIP) and NO scavenger (cPTIO) confirmed that the mitigating effects of SA and NO involved induction in S assimilation.
The effects of exogenously-sourced NO (nitric oxide, as 100 µM SNP) and proline (50 mM) in the protection of the photosynthetic performance of wheat (Triticum aestivum L.) plants against heat stress were investigated. The study focused on the mechanisms of proline accumulation, activity, gene expression of antioxidant enzymes, and NO generation. Plants were exposed to a temperature of 40 °C for 6 h per day over 15 days, then allowed to recover at 28 °C. Heat-stressed plants showed increased oxidative stress, with higher levels of H2O2 and TBARS (thiobarbituric acid reactive substances) and increased proline accumulation, ACS activity, ethylene evolution, and NO generation, which in turn leads to increased accumulation of antioxidant enzymes and reduced photosynthetic attributes. In the tested wheat cultivar, the exogenous application of SNP and proline under heat stress improved the photosynthesis and reduced oxidative stress by enhancing the enzymatic antioxidant defense system. Potentially, the promoter AOX (alternative oxidase) played a role in maintaining redox homeostasis by lowering H2O2 and TBARS levels. The genes for GR antioxidant and photosystem II core protein encoding psbA and psbB were highly up-regulated in nitric oxide and proline treated heat-stressed plants, indicating that ethylene positively impacted photosynthesis under high temperature stress. Moreover, nitric oxide supplementation under high temperature stress optimized ethylene levels to regulate the assimilation and metabolism of proline and the antioxidant system, lowering the adverse effects. The study showed that nitric oxide and proline increased high temperature stress tolerance in wheat by increasing the osmolytes accumulation and the antioxidant system, resulting in enhanced photosynthesis.
Melatonin (MT) and methyl jasmonate (MeJA) play important roles in the adaptation of plants to different stress factors by modulating stress tolerance mechanisms. The present study reports the involvement of MT (100 µM) in MeJA (10 µM)-induced photosynthetic performance and heat stress acclimation through regulation of the antioxidant metabolism and ethylene production in wheat (Triticum aestivum L.) plants. Plants exposed to 40 °C for 6 h per day for 15 days and allowed to retrieve at 28 °C showed enhanced oxidative stress and antioxidant metabolism, increased 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity and ethylene production, and decreased photosynthetic performance. In contrast, the exogenously applied MT and MeJA reduced oxidative stress through improved S-assimilation (+ 73.6% S content), antioxidant defense system (+ 70.9% SOD, + 115.8% APX and + 104.2% GR, and + 49.5% GSH), optimized ethylene level to 58.4% resulting in improved photosynthesis by 75%. The use of p-chlorophenyl alanine, a MT biosynthesis inhibitor along with MeJA in the presence of heat stress reduced the photosynthetic performance, ATP-S activity and GSH content, substantiated the requirement of MT in the MeJA-induced photosynthetic response of plants under heat stress. These findings suggest that MeJA evoked the plant’s ability to withstand heat stress by regulating the S-assimilation, antioxidant defense system, and ethylene production, and improving photosynthetic performance was dependent on MT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.