Active and inexpensive catalysts for oxygen reduction are crucially needed for the widespread development of polymer electrolyte fuel cells and metal-air batteries. While iron-nitrogen-carbon materials pyrolytically prepared from ZIF-8, a specific zeolitic imidazolate framework (ZIF) with sodalite topology, have shown enhanced activities toward oxygen reduction in acidic electrolyte, the rational design of sacrificial metal-organic frameworks toward this application has hitherto remained elusive. Here, we report for the first time that the oxygen reduction activity of Fe-N-C catalysts positively correlates with the cavity size and mass-specific pore volume in pristine ZIFs. The high activity of Fe-N-C materials prepared from ZIF-8 could be rationalized, and another ZIF structure leading to even higher activity was identified. In contrast, the ORR activity is mostly unaffected by the ligand chemistry in pristine ZIFs. These structure-property relationships will help identifying novel sacrificial ZIF or porous metal-organic frameworks leading to even more active Fe-N-C catalysts. The findings are of great interest for a broader application of the class of inexpensive metal-nitrogen-carbon catalysts that have shown promising activity also for the hydrogen evolution (Co-N-C) and carbon dioxide reduction (Fe-N-C and Mn-N-C).
The metal-organic frameworks (MOFs) MIL-100(Fe), Cu-BTC and CPO-27(Ni) were synthesised in 1 kg batches. The materials were then formed in two different industrially relevant ways. Firstly, dry granulation was used to produce pellets which were sieved to give material with a 300-1000 μm size, and the fines were subsequently recycled to mimic a large scale industrial process. Secondly, wet granulation with a polymer was used to produce granules which were again sieved to 300-1000 μm. XRD data shows that the structures of MIL-100(Fe) and CPO-27(Ni) remain intact during both forming processes, whilst Cu-BTC is shown to degrade during processing. This is in line with the ammonia adsorption data obtained for the formed materials which evaluated the ammonia adsorption capacity of the materials using breakthrough measurements. MIL-100(Fe) and CPO-27(Ni) are shown to have capacities of 47 mg g and 62 mg g respectively whilst Cu-BTC has a decreased capacity of 37 mg g from 97 mg g upon forming. The formed materials were also aged at 25 °C and 80% humidity for a week and the ammonia adsorption capacity re-evaluated. As expected, Cu-BTC decomposed under these conditions, whilst MIL-100(Fe) and CPO-27(Ni) show slightly decreased ammonia adsorption capacities of 36 mg g and 60 mg g respectively.
The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range. Self-diffusivities calculated by MD were within a factor of 6 of those measured experimentally at each temperature. The activation energies of diffusion were also similar for both studied systems: 3.7 and 4.4 kJ mol(-1) for the H- and Cu-chabazite respectively, suggesting that counterion presence has little impact on ammonia diffusivity on the timescale of the QENS experiment. An explanation is given by the MD simulations, which showed the strong coordination of NH3 with Cu(2+) counterions in the centre of the chabazite cage, shielding other molecules from interaction with the ion, and allowing for intercage diffusion through the 8-ring windows (consistent with the experimentally observed jump length) to carry on unhindered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.