Living nonhuman primates generally inhabit tropical forests, and torpor is regarded as a strategy employed by cold-adapted organisms. Yet, some primates employ daily torpor or hibernation (heterothermy) under obligatory, temporary, or emergency circumstances. Though heterothermy is present in most mammalian lineages, there are only three extant heterothermic primate lineages: bushbabies from Africa, lorises from Asia, and dwarf and mouse lemurs from Madagascar. Here, we analyze their phenotypes in the general context of tropical mammalian heterothermy. We focus on Malagasy lemurs as they have been the most intensively studied and also show an unmatched range of flexibility in their heterothermic responses. We discuss the evidence for whether heterothermy should be considered an ancestral or derived condition in primates. This consideration is particularly intriguing given that an understanding of the underlying mechanisms for hibernation in lemurs opens the possibility for insight into genotype-phenotype interactions, including those with biomedical relevance for humans.
Hibernation is an adaptive strategy some mammals use to survive highly seasonal or unpredictable environments. We present the first investigation on the transcriptomics of hibernation in a natural population of primate hibernators: Crossley's dwarf lemurs (Cheirogaleus crossleyi). Using capture-mark-recapture techniques to track the same animals over a period of 7 months in Madagascar, we used RNA-seq to compare gene expression profiles in white adipose tissue (WAT) during three distinct physiological states. We focus on pathway analysis to assess the biological significance of transcriptional changes in dwarf lemur WAT and, by comparing and contrasting what is known in other model hibernating species, contribute to a broader understanding of genomic contributions of hibernation across Mammalia. The hibernation signature is characterized by a suppression of lipid biosynthesis, pyruvate metabolism and mitochondrial-associated functions, and an accumulation of transcripts encoding ribosomal components and iron-storage proteins. The data support a key role of pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) in regulating the shift in fuel economy during periods of severe food deprivation. This pattern of PDK4 holds true across representative hibernating species from disparate mammalian groups, suggesting that the genetic underpinnings of hibernation may be ancestral to mammals.
In recent years, the study of the molecular processes involved in mammalian hibernation has shifted from investigating a few carefully selected candidate genes to large-scale analysis of differential gene expression. The availability of high-throughput data provides an unprecedented opportunity to ask whether phylogenetically distant species show similar mechanisms of genetic control, and how these relate to particular genes and pathways involved in the hibernation phenotype. In order to address these questions, we compare 11 datasets of differentially expressed (DE) genes from two ground squirrel species, one bat species, and the American black bear, as well as a list of genes extracted from the literature that previously have been correlated with the drastic physiological changes associated with hibernation. We identify several genes that are DE in different species, indicating either ancestral adaptations or evolutionary convergence. When we use a network approach to expand the original datasets of DE genes to large gene networks using available interactome data, a higher agreement between datasets is achieved. This indicates that the same key pathways are important for activating and maintaining the hibernation phenotype. Functional-term-enrichment analysis identifies several important metabolic and mitochondrial processes that are critical for hibernation, such as fatty acid beta-oxidation and mitochondrial transport. We do not detect any enrichment of positive selection signatures in the coding sequences of genes from the networks of hibernation-associated genes, supporting the hypothesis that the genetic processes shaping the hibernation phenotype are driven primarily by changes in gene regulation.
Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators.
Barrier defects and/or alterations in the ability of the gut epithelium to repair itself are critical etiologic mechanisms of gastrointestinal disease. Our ongoing studies indicate that the chemokine receptor CXCR4 and its cognate ligand CXCL12 regulate intestinal epithelial barrier maturation and restitution in cell culture models. Gene deficient mice lacking CXCR4 expression specifically by the cells of the intestinal epithelium were used to test the hypothesis that CXCR4 regulates mucosal barrier integrity in vivo. Epithelial expression of CXCR4 was assessed by RT-PCR, Southern blot, Western blot and immunohistochemistry. In vivo wounding assays were performed by addition of 3% Dextran Sodium Sulfate in drinking water for 5 days. Intestinal damage and DAI scores were assessed by histological examination. ERK phosphorylation was assessed in vivo by immunoblot and immunofluorescence. CXCR4 knockdown cells were established using a lentiviral approach and ERK phosphorylation was assessed. Consistent with targeted roles in restitution, epithelium from patients with inflammatory bowel disease indicated that CXCR4 and CXCL12 expression was stable throughout the human colonic epithelium. Conditional CXCR4-deficient mice developed normally, with little phenotypic differences in epithelial morphology, proliferation, or migration. Re-epithelialization was absent in CXCR4 conditional knockout mice following acute dextran-sodium sulfate-induced inflammation. In contrast, heterozygous CXCR4 depleted mice displayed significant improvement in epithelial ulcer healing in acute and chronic inflammation. Mucosal injury repair was correlated with extracellular-regulated kinase (ERK)-1/2 activity and localization along the crypt-villus axis, with heterozygous mice characterized by increased ERK1/2 activation. Lentiviral depletion of CXCR4 in IEC6 cells similarly altered ERK1/2 activity and prevented chemokine stimulated migration. Together these data indicate that chemokine receptors participate in epithelial barrier responses through coordination of the ERK1/2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.