In optical coherence tomography a broadband light source is used for high axial resolution. Here we show high-resolution sectioning in full-field optical coherence microscopy using longitudinal spatial coherence properties of a monochromatic light source.
White light phase-shifting interference microscopy (WL-PSIM) is a prominent technique for high-resolution quantitative phase imaging (QPI) of industrial and biological specimens. However, multiple interferograms with accurate phaseshifts are essentially required in WL-PSIM for measuring the accurate phase of the object. Here, we present single-shot phase-shifting interferometric techniques for accurate phase measurement using filtered white light (520±36 nm) phase-shifting interference microscopy (F-WL-PSIM) and deep neural network (DNN). The methods are incorporated by training the DNN to generate (a) four phase-shifted frames and (b) direct phase from a single interferogram.
Quantitative phase microscopy (QPM) is a label-free technique that enables monitoring of morphological changes at the subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth quantitative phase imaging using partially spatially coherent digital holographic microscopy (PSC-DHM) assisted with a deep neural network. The PSC source synthesized to improve the spatial sensitivity of the reconstructed phase map from the interferometric images. Further, compatible generative adversarial network (GAN) is used and trained with paired low-resolution (LR) and high-resolution (HR) datasets acquired from the PSC-DHM system. The training of the network is performed on two different types of samples, i.e. mostly homogenous human red blood cells (RBC), and on highly heterogeneous macrophages. The performance is evaluated by predicting the HR images from the datasets captured with a low NA lens and compared with the actual HR phase images. An improvement of 9× in the space-bandwidth product is demonstrated for both RBC and macrophages datasets. We believe that the PSC-DHM + GAN approach would be applicable in single-shot label free tissue imaging, disease classification and other high-resolution tomography applications by utilizing the longitudinal spatial coherence properties of the light source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.