Virus-like particles (VLPs) have emerged as important and versatile architectures for chemical manipulation in the development of functional hybrid nanostructures. Here we have successfully demonstrated the site selective initiation of atom transfer radical polymerization (ATRP) reactions to form an addressable polymer constrained within the interior cavity of a VLP. This protein-polymer hybrid, of P22 and crosslinked poly(2-aminoethyl methacrylate), is potentially useful as a new high-density delivery vehicle for encapsulation and delivery of small molecule cargos. In particular, the encapsulated polymer can act as a scaffold for the attachment of primary amine reactive molecules of interest, such as a fluorescein dye or a Gd-DTPA MRI contrast agent. Using this approach, a significant increase in labeling density of the VLP, compared to previous modifications of VLPs, can be achieved. These results highlight the use of multimeric protein-polymer conjugates for their potential utility in the development of VLP-based MRI contrast agents with the possibility of loading other cargos.
Viruses and virus-like particles (VLPs) are useful tools in biomedical research. Their defined structural attributes make them attractive platforms for engineered interactions over large molecular surface areas. In this report, we describe the use of VLPs as multivalent macroinitiators for atom transfer radical polymerization (ATRP). The introduction of chemically reactive monomers during polymerization provides a robust platform for post-synthetic modification via the copper-catalyzed azide-alkyne cycloaddition reaction. These results provide the basis to construct nanoparticle delivery vehicles and imaging agents using protein-polymer conjugates.
Attachment of multiple chelated Gd3+ ions to the interior of bacteriophage P22 viral capsids afford nanoscale MRI contrast agents with extremely high relaxivity values. Highly fenestrated ‘wiffleball’ morphology is unique to P22 and assures water exchange between the environment and interior cavity of the capsid. The cavity of P22 ‘wiffleball’ was functionalized with a branched oligomer comprising of multiple DTPA-Gd complexes resulting in an impressive payload of 1,900 Gd3+ ions inside each 64nm capsid. High relaxivities of r1 ionic = 21.7 mM−1 sec−1 and r1 particle = 41,300 mM−1 sec−1 at 298K, 0.65T (28MHz) are reported, with r1/r2 ratio of 0.80 and optimized rotational correlation time for this system. Specific design modifications are suggested for future improvements of viral capsid-based MRI contrast agents directed toward clinical translation.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA-guided endonucleases are powerful new tools for targeted genome engineering. These nucleases provide an efficient and precise method for manipulating eukaryotic genomes; however, delivery of these reagents to specific cell-types remains challenging. Virus-like particles (VLPs) derived from bacteriophage P22, are robust supramolecular protein cage structures with demonstrated utility for cell type-specific delivery of encapsulated cargos. Here, we genetically fuse Cas9 to a truncated form of the P22 scaffold protein, which acts as a template for capsid assembly as well as a specific encapsulation signal for Cas9. Our results indicate that Cas9 and a single-guide RNA are packaged inside the P22 VLP, and activity assays indicate that this RNA-guided endonuclease is functional for sequence-specific cleavage of dsDNA targets. This work demonstrates the potential for developing P22 as a delivery vehicle for cell specific targeting of Cas9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.