Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 Å (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)–superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm–1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)–CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site.
PHM is a dicopper enzyme that plays a vital role in the amidation of glycine extended pro-peptides. One of the crucial aspects of its chemistry is the transfer of two electrons from an electron-storing and transferring site (CuH) to the oxygen binding site and catalytic center (CuM) over a distance of 11 Å during one catalytic turnover event. Here we present our studies on the first electron transfer step (reductive phase) in the WT PHM as well as its variants. Stopped-flow was used to record the reduction kinetic traces using the chromophoric agent DMPD as the reductant. The reduction was found to be biphasic in the WT PHM with an initial fast phase (17.2s−1) followed by a much slower phase (0.46s−1). We were able to ascribe the fast and slow phase to the CuH and CuM-sites respectively by making use of the H242A and H107H108A mutants which only contain the CuH-site and CuM-site respectively. In the absence of substrate the redox potentials determined by cyclic voltammetry were 270 mV (CuH-site) and −15 mV (CuM-site), but binding of substrate (Ac-YVG) was found to alter both potentials so that they converged to a common value of 83 mV. Substrate binding also accelerated the slow reductive phase by ~10 fold, an effect that could be explained at least partially by the equalization of the reduction potential of the copper centers. Studies on H108A showed that the ET to the CuM-site is blocked, highlighting the role of the H108 ligand as a component of the reductive ET pathway. Strikingly, the rate of reduction of the H172A variant was unaffected despite the rate of catalysis being three orders of magnitude less than that of the WT PHM. These studies strongly indicate that the reductive phase and catalytic phase ET pathways are different and suggest a bifurcated ET pathway in PHM. We propose that H172 and Y79 form part of an alternate pathway for the catalytic phase ET while the H108 ligand along with the water molecules and substrate form the reductive phase ET pathway.
Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.