Abstract-The utility of anonymous communication is undermined by a growing number of websites treating users of such services in a degraded fashion. The second-class treatment of anonymous users ranges from outright rejection to limiting their access to a subset of the service's functionality or imposing hurdles such as CAPTCHA-solving. To date, the observation of such practices has relied upon anecdotal reports catalogued by frustrated anonymity users. We present a study to methodically enumerate and characterize, in the context of Tor, the treatment of anonymous users as second-class Web citizens.We focus on first-line blocking: at the transport layer, through reset or dropped connections; and at the application layer, through explicit blocks served from website home pages. Our study draws upon several data sources: comparisons of Internetwide port scans from Tor exit nodes versus from control hosts; scans of the home pages of top-1,000 Alexa websites through every Tor exit; and analysis of nearly a year of historic HTTP crawls from Tor network and control hosts. We develop a methodology to distinguish censorship events from incidental failures such as those caused by packet loss or network outages, and incorporate consideration of the endemic churn in web-accessible services over both time and geographic diversity. We find clear evidence of Tor blocking on the Web, including 3.67% of the top-1,000 Alexa sites. Some blocks specifically target Tor, while others result from fate-sharing when abuse-based automated blockers trigger due to misbehaving Web sessions sharing the same exit node.
An increasing number of countries implement Internet censorship at different scales and for a variety of reasons. In particular, the link between the censored client and entry point to the uncensored network is a frequent target of censorship due to the ease with which a nation-state censor can control it. A number of censorship resistance systems have been developed thus far to help circumvent blocking on this link, which we refer to as link circumvention systems (LCs). The variety and profusion of attack vectors available to a censor has led to an arms race, leading to a dramatic speed of evolution of LCs. Despite their inherent complexity and the breadth of work in this area, there is no systematic way to evaluate link circumvention systems and compare them against each other. In this paper, we (i) sketch an attack model to comprehensively explore a censor's capabilities, (ii) present an abstract model of a LC, a system that helps a censored client communicate with a server over the Internet while resisting censorship, (iii) describe an evaluation stack that underscores a layered approach to evaluate LCs, and (iv) systemize and evaluate existing censorship resistance systems that provide link circumvention. We highlight open challenges in the evaluation and development of LCs and discuss possible mitigations.
Internet censorship artificially changes the dynamics of resource production and consumption, affecting a range of stakeholders that include end users, service providers, and content providers. We analyze two large-scale censorship events in Pakistan: blocking of pornographic content in 2011 and of YouTube in 2012. Using traffic datasets collected at home and SOHO networks before and after the censorship events, we: a) quantify the demand for blocked content, b) illuminate challenges encountered by service providers in implementing the censorship policies, c) investigate changes in user behavior (e.g., with respect to circumvention) after censorship, and d) assess benefits extracted by competing content providers of blocked content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.