Recent measurements of plasma arginine vasotocin (AVT) in teleost fish suggest circulating concentrations of 10(-10)-10(-12)M. Previous studies of the renal actions of AVT in vivo suggest both diuretic and antidiuretic effects, but at unknown circulating concentrations. We have investigated the renal actions of 10(-9) and 10(-11) M AVT in vitro using an in situ perfused kidney preparation of rainbow trout (oncorhynchus mykiss). AVT increased vascular resistance (56%), reduced perfusate flow (P < 0.001), and increased interrenal aortic pressure (P < 0.001). AVT resulted in dose-dependent decreases in urine flow rates, glomerular filtration rates, and tubular transport maxima for glucose. AVT at 10(-11) M reduced relative free water clearances (P < 0.01), but urine/plasma inulin ratios were unchanged, whereas 10(-9)M AVT reduced urine/plasma inulin ratios (P < 0.01) and increased relative free water clearances (P < 0.05). The filtering population of glomeruli was reduced by both 10(-11) and 10(-9)M AVT to approximately one-third of the glomeruli, and a similar population of arterially perfused but nonfiltering glomeruli emerged. These results demonstrate that physiological concentrations of AVT have potent glomerular antidiuretic action in the trout, reducing the number of functional glomeruli, and imply reduced individual nephron filtration rates.
Red tide, one of the harmful algal blooms (HABs) is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September), recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March). HABs may have contributed to hypoxia and/or other negative ecological impacts.
Physiological and molecular approaches were used to investigate the existence of an intrarenal renin-angiotensin system (RAS) in rainbow trout. Inhibition of angiotensin-converting enzyme by captopril (5 x 10(-4 )M) rapidly decreased vascular resistance of the trunk of the trout, perfused at 19 mmHg, resulting in an increased perfusate flow rate and a decreased intrarenal dorsal aortic pressure. A profound diuresis occurred in the in situ perfused kidney and reflected both increased glomerular filtration rates and decreased water reabsorption (osmolyte reabsorption was unchanged). Renal and vascular parameters recovered once captopril treatment was stopped. Diuretic and vascular effects of captopril on the in situ trout kidney concur with an inhibition of known vasoconstrictor and antidiuretic actions of angiotensin II. However, at a higher perfusion pressure (28 mmHg), captopril had no effect on intrarenal aortic pressure or perfusate and urine flow rates, suggesting that the trout intrarenal RAS is activated by low perfusion pressures/flows. Existence of the renal RAS in trout was further supported by evidence for angiotensinogen gene expression in kidney as well as liver.
Harmful Algal Blooms (HABs) can have a significant impact on the distribution and survival of coastal fishes and invertebrates, and consequently they can affect local economies where fishing is an important activity. In October 2005, extensive algal blooms with brownish/orange discoloured water and fish mortalities were observed east of Masirah Island. Satellite images revealed cooler upwelled surface water along a broad front just prior to the event, followed by a gradual warming period coinciding with the mortalities. Depth profiles of dissolved oxygen (DO), temperature, salinity and pH taken on 19th October (during the fish mortality event) showed a pronounced thermocline at ~15 m depth and minimum DO of 0.82 ml/L at 25 m depth, and a slight improvement in DO to 1.3 ml/L was measured on 22nd October (after the event). Demersal fishes of several families were prominent among mortalities. No bacterial infestation was found in fish samples and no human poisoning was reported. Planktological data showed that marine dinoflagellates Noctiluca scintillans and Prorocentrum micans and toxic blooms of cyanobacterium Trichodesmium erythraeum were present.
Harmful, toxic algae are now considered as one of the important players in the newly emerging environmental risk factors. The apparent global increase in harmful algal blooms (HABs) is becoming a serious problem in both aquaculture and fisheries populations. Not only has the magnitude and intensity of public health and economic impacts of these blooms increased in recent years, but the number of geographic locations experiencing toxic algal blooms has also increased dramatically. There are two primary factors causing HABs outbreaks. The natural processes such as upwelling and relaxation, and the anthropogenic loading resulting in eutrophication. However, the influence of global climate changes on algal bloom phenomenon cannot be ignored. The problem warrants development of effective strategies for the management and mitigation of HABs. Progress made in the routine coastal monitoring programs, development of methods for detection of algal species and toxins and coastal modeling activities for predicting HABs reflect the international concerns regarding the impacts of AL-GHELANI, H.M., ALKINDI, A.Y.A, AMER, S. AND AL-AKHZAMI, Y.K. 2HABs. Innovative techniques using molecular probes will hopefully result in development of rapid, reliable screening methods for phycotoxins and the causative organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.