BackgroundIn the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends.MethodologyWe examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data.ConclusionsWe find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.
Figure 1: The decision history tree view. As users interact in the model view, the decisions made generate a history tree. Paths of the tree are plotted over time on the x-axis, with the y-axis representing the cumulative deviation from the baseline simulation. Mousing over on a node brings up a thumbnail view of the decision measures implemented at that point in the simulation. Legend symbols represent mitigative response measure types. Each symbol in the decision history tree represents the insertion point of the decision path. A unique color is assigned to each symbol and the corresponding decision path. ABSTRACTIn modeling infectious diseases, scientists are studying the mechanisms by which diseases spread, predicting the future course of the outbreak, and evaluating strategies applied to control an epidemic. While recent work has focused on accurately modeling disease spread, less work has been performed in developing interactive decision support tools for analyzing the future course of the outbreak and evaluating potential disease mitigation strategies. The absence of such tools makes it difficult for researchers, analysts and public health officials to evaluate response measures within outbreak scenarios. As such, our research focuses on the development of an interactive decision support environment in which users can explore epidemic models and their impact. This environment provides a spatiotemporal view where users can interactively utilize mitigative response measures and observe the impact of their decision over time. Our system also provides users with a linked decision history visualization and navigation tool that support the simultaneous comparison of mortality and infection rates corresponding to different response measures at different points in time. *
Market participants and businesses have made tremendous efforts to make the best decisions in a timely manner under varying economic and business circumstances. As such, decision-making processes based on financial data have been a popular topic in industries. However, analyzing financial data is a non-trivial task due to large volume, diversity and complexity, and this has led to rapid research and development of visualizations and visual analytics systems for financial data exploration. Often, the development of such systems requires researchers to collaborate with financial domain experts to better extract requirements and challenges in their tasks. Work to systematically study and gather the task requirements and to acquire an overview of existing visualizations and visual analytics systems that have been applied in financial domains with respect to real-world data sets has not been completed. To this end, we perform a comprehensive survey of visualizations and visual analytics. In this work, we categorize financial systems in terms of data sources, applied automated techniques, visualization techniques, interaction, and evaluation methods. For the categorization and characterization, we utilize existing taxonomies of visualization and interaction. In addition, we present task requirements extracted from interviews with domain experts in order to help researchers design better systems with detailed goals.
Capsule Summary An integrated, high resolution, data-driven regional modeling system has been recently developed for the Red Sea region and is being used for research and various environmental applications.
Fig. 1. Typographic map for Chicago, IL built using our automatic visualization technique and geographical data from OpenStreetMap. Colors are used to signify different entity types based on a palette used by Axis Maps in commercially sold Typographic Maps.Abstract-We present a method for automatically building typographic maps that merge text and spatial data into a visual representation where text alone forms the graphical features. We further show how to use this approach to visualize spatial data such as traffic density, crime rate, or demographic data. The technique accepts a vector representation of a geographic map and spatializes the textual labels in the space onto polylines and polygons based on user-defined visual attributes and constraints. Our sample implementation runs as a Web service, spatializing shape files from the OpenStreetMap project into typographic maps for any region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.