PurposeIt is crucial to consider the multitude of possible building adaptation design strategies for improving the existing conditions of building stock as an alternative to demolition.Design/methodology/approachIntegration of physics-based simulation tools and decision-making tools such as Multi-Attribute Utility (MAU) and Interactive Multi-objective Optimization (IMO) in the design process enable optimized design decision-making for high-performing buildings. A methodology is presented for improving building adaptation design decision making, specifically in the early-stage design feasibility analysis. Ten residential building adaptation strategies are selected and applied to one primary building system for eight performance metrics using physics-based simulation tools. These measures include energy use, thermal comfort, daylighting, natural ventilation, systems performance, life cycle, cost-benefit and constructability. The results are processed using MAU and IMO analysis and are validated through sensitivity analysis by testing one design strategy on three building systems.FindingsQuantifiable comparison of building adaptation strategies based on multiple metrics derived from physics-based simulations can assist in the evaluation of overall environmental performance and economic feasibility for building adaptation projects.Research limitations/implicationsThe current methodology presented is limited to the analysis of one decision-maker at a time. It can be improved to include multiple decision-makers and capture varying perspectives to reflect common practices in the industry.Practical implicationsThe methodology presented supports affordable generation and analysis of a large number of design options for early-stage design optimization.Originality/valueGiven the practical implications, more space and time is created for exploration and innovation, resulting in potential for improved benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.