<p>The large number of transactions, companies need analytical tools to provide information that is useful for the company in determining the layout of goods, what items are most in demand by consumers and others. As experienced by several other supermarkets, product placement is a major problem. Data mining is a technique for digging up information that is hidden or hidden. This study will identify several types of association rules relating to sales transaction data, namely support and confidence values. The data used are 25 food and beverage products. Data mining technique uses associative rule with the Apriori method, aims to find a combination of items with a frequency pattern of the transaction results. After all high frequency patterns are found, then the association rules that meet the minimum requirements are found for confidence associative rules A → B minimum confidence = 25%, confidence value of A → B rules.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.