E-learning or electronic learning platforms facilitate delivery of the knowledge spectrum to the learning community through information and communication technologies. The transfer of knowledge takes place from experts to learners, and externalization of the knowledge transfer is significant. In the e-learning environment, the learners seek subject expertise to clarify their subject queries, and a learner query can be routed to an expert for externalization of expert knowledge provided the learner knows the subject expert or the expertise group. However, learners new to e-learning systems are not aware of the expertise group to which the query should be sent, which results in time delays, non-response, inaccurate solutions and loss of knowledge capture. Several models have been proposed to resolve this task, but thus far, these efforts have focused completely on returning the most conversant people as experts on a particular topic to retrieve valuable knowledge. To address this problem, we propose an approach that externalizes the tacit knowledge of a subject expert by creating a dynamic query handling system that automatically transfers a user query to the best subject expert.
Landslides are critical natural disasters characterized by a downward movement of land masses. As one of the deadliest types of disasters worldwide, they have a high death toll every year and cause a large amount of economic damage. The transition between urban and rural areas is characterized by highways, which, in rugged Himalayan terrain, have to be constructed by cutting into the mountains, thereby destabilizing them and making them prone to landslides. This study was conducted in one most landslide-prone regions of the entire Himalayan belt, i.e., National Highway NH-44 (the Jammu–Srinagar stretch). The main objectives of this study are to understand the causes behind the regular recurrence of the landslides in this region and propose a landslide early warning system (LEWS) based on the most suitable machine learning algorithms among the four selected, i.e., multiple linear regression, adaptive neuro-fuzzy inference system (ANFIS), random forest, and decision tree. It was found that ANFIS and random forest outperformed the other proposed methods with a substantial increase in overall accuracy. The LEWS model was developed using the land system parameters that govern landslide occurrence, such as rainfall, soil moisture, distance to the road and river, slope, land surface temperature (LST), and the built-up area (BUA) near the landslide site. The developed LEWS was validated using various statistical error assessment tools such as the root mean square error (RMSE), mean square error (MSE), confusion matrix, out-of-bag (OOB) error estimation, and area under the receiver operating characteristic (ROC) curve (AUC). The outcomes of this study can help to manage landslide hazards in the Himalayan urban–rural transition zones and serve as a sample study for similar mountainous regions of the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.