The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an ϳ56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors.Hepatitis E virus (HEV), the causative agent of hepatitis E, is responsible for sporadic infections as well as large outbreaks of waterborne acute hepatitis (9). It is a nonenveloped and single-and positive-stranded RNA virus of about 27 to 34 nm (30). The virus has been classified as the sole member of the genus Hepevirus, family Hepeviridae (15). The viral genome consists of short 5Ј and 3Ј untranslated regions and three open reading frames (ORFs), called ORF1, ORF2, and ORF3 (62). ORF1 encodes the nonstructural proteins that are involved in virus replication and viral protein processing (1, 56), ORF2 encodes the viral capsid protein, and ORF3, which overlaps the 5Ј end of ORF2 (62), encodes a small protein shown to regulate the cellular environment (8,29,44). The AUG start codon of ORF3 was predicted to overlap with the UGA stop codon of ORF1; however, recent studies have shown that the third inframe AUG in the junction region is the authentic initiation site of ORF3 and is critical for virus infection (19,26). Thus, ORF2 and ORF3 are proposed to be translated from a single bicistronic mRNA and overlap each other, but neither overlaps ORF1.Until recently due to the lack of a suitable cell culture system or small animal models for the propagation of HEV, studies concerning the properties of individual gene products and their role(s) in replication were restricted to subgenomic or replicon expression strategies. Viral genomic RNA is infectious for some cultured cells and nonhuman primates, and transfection with capped recombinant genomes can generate infectio...
A combination of vaccination approaches will likely be necessary to fully control the SARS-CoV-2 pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane anchored pre-fusion stabilized spike (MVA/S), but not secreted S1, induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8 + T cell responses, and showed protection from SARS-CoV-2 infection and virus replication in the lung as early as day 2 following intranasal or intratracheal challenge. Single-cell RNA sequencing analysis of lung cells at day 4 post-infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities, and lowered induction of interferon stimulated genes. These results demonstrate that MVA/S vaccination induces both neutralizing antibodies and CD8 + T cells in the blood and lung and serves as a potential vaccine candidate against SARS-CoV-2.
Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms.retrovirus | RNA genome | Gag-RNA complex | virus assembly | RNA-binding protein
Genome packaging is an essential step to generate infectious HIV-1 virions and is mediated by interactions between the viral protein Gag and cis-acting elements in the full-length RNA. The sequence necessary and sufficient to allow RNA genome packaging into an HIV-1 particle has not been defined. Here, we used two distinct reporter systems to determine the HIV-1 sequence required for heterologous, non-viral RNAs to be packaged into viral particles. Although the 5' untranslated region (UTR) of the HIV-1 RNA is known to be important for RNA packaging, we found that its ability to mediate packaging relies heavily on the context of the downstream sequences. Insertion of the 5' UTR and the first 32-nt of gag into two different reporter RNAs is not sufficient to mediate the packaging of these RNA into HIV-1 particles. However, adding the 5' half of the gag gene to the 5' UTR strongly facilitates the packaging of two reporter RNAs; such RNAs can be packaged at >50% of the efficiencies of an HIV-1 near full-length vector. To further examine the role of the gag sequence in RNA packaging, we replaced the 5' gag sequence in the HIV-1 genome with two codon-optimized gag sequences and found that such substitutions only resulted in a moderate decrease of RNA packaging efficiencies. Taken together, these results indicated that both HIV-1 5' UTR and the 5' gag sequence are required for efficient packaging of non-viral RNA into HIV-1 particles, although the gag sequence likely plays an indirect role in genome packaging.
SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin-cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. Following vaccination of mice, the MVA/SdFCS vaccine induced 8-fold higher neutralizing antibodies compared to MVA/S, which expressed spike without FCS inactivation, and protected against the beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU) or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, rectum) which neutralized the homologous (WA-1/2020) and heterologous VOCs, including delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both S and N specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared to IM vaccination. Following challenge with SARS-CoV-2 delta variant, the IM route induced robust protection, BU moderate protection and the SL no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.