This paper presents the score level fusion of multimodal biometrics using Hanman-Anirban entropy function. Entropy function captures the uncertainty in the scores. The experimental results ascertain that Entropy based score level fusion outperforms over existing methods of score level fusion such as t-norms, sum and max. We have validated our claim on finger-knuckle-print (FKP) dataset consisting of left index, left middle, right index and right middle FKP. The features of FKPs are extracted using the Gabor Wavelet. The implementation is done using MATLAB and the performance of the proposed technique is evaluated using Receiver Operating characteristics (ROC) curve. The proposed score level fusion approach achieves significant improvement in the performance over the individual FKP. We obtain Genuine acceptance rate of 99% with FAR of 0.001 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.