2D nanomaterials are finding numerous applications in next-generation electronics, consumer goods, energy generation and storage, and healthcare. The rapid rise of utility and applications for 2D nanomaterials necessitates developing means for their mass production. This study details a new compressible flow exfoliation method for producing 2D nanomaterials using a multiphase flow of 2D layered materials suspended in a high-pressure gas undergoing expansion. The expanded gas-solid mixture is sprayed in a suitable solvent, where a significant portion (up to 10% yield) of the initial hexagonal boron nitride material is found to be exfoliated with a mean thickness of 4.2 nm. The exfoliation is attributed to the high shear rates (γ˙ > 10 s ) generated by supersonic flow of compressible gases inside narrow orifices and converging-diverging channels. This method has significant advantages over current 2D material exfoliation methods, such as chemical intercalation and exfoliation, as well as liquid phase shear exfoliation, with the most obvious benefit being the fast, continuous nature of the process. Other advantages include environmentally friendly processing, reduced occurrence of defects, and the versatility to be applied to any 2D layered material using any gaseous medium. Scaling this process to industrial production has a strong possibility of reducing the cost of creating 2D nanomaterials.
The facile fabrication of functionally graded all-graphene films using a single-step casting process is reported. The films consist of a selfassembled graphene oxide (GO) precursor that can be reduced to different levels on an active metal substrate. Control of processing conditions such as the underlying substrate metal and the film-drying environment results in an ability to tailor the internal architecture of the films as well as to functionally grade the reduction of GO. A gradient arrangement within each film, where one side is electrically conductive reduced GO (rGO) and the other side is insulating GO, was confirmed by scanning electron microscopy, Raman, X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy characterization studies. All-graphene-based freestanding films with selectively reduced GO were used in transient electronic applications such as flexible circuitry and RFID tag antennas, where their decommissioning is easily achieved by capitalizing on GO's ability to readily dissociate and create a stable suspension in water. Furthermore, the functionally graded structure was found to exhibit differential swelling behavior, and its potential applications in graphene-based actuators are outlined.
Non-invasive x-ray micro-computed tomography was employed for thorough quantitative and qualitative analysis of the cellular structure of foams made of linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and their blends. Special emphasis was given to the differences between the results of 3D and 2D analyses, to evaluate the possible errors while studying the morphology using conventional 2D techniques (e.g. SEM). Blends with the weight compositions of 90%LLDPE/10%HDPE and 75%LLDPE/25%HDPE were produced at different rotor speeds of 10, 60 and 120 rpm and batch foaming was examined over a wide range of temperature. The void fraction values from 2D and 3D analysis were found to agree well with those obtained with the Archimedes method. Results showed more uniform cell size distribution for blends mixed at the lower spectrum of screw rotational speed. Among the blends with higher void fraction values and relatively uniform cellular structure, higher average cell size (3–30%) and cell population density (1.25–2.5 times) were noticed in 3D analysis compared with 2D data. The micro-CT images at different cross sections revealed anisotropic cell growth and more elongated cells along the thickness of the specimen. It was also observed that, with increase in foaming temperature, cell shrink prevailed over cell coalescence in the samples with lower viscosity (prepared at low rpm of 10), while for those with higher viscosity (prepared at an rpm of 60) cell coalescence was more dominant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.