Pesticides are commonly used in food crop production systems to control crop pests and diseases and ensure maximum yield with high market value. However, the accumulation of these chemical inputs in crop fields increases risks to biodiversity and human health. In addition, people are increasingly seeking foods in which pesticide residues are low or absent and that have been produced in a sustainable fashion. More than half of the world’s human population is dependent on rice as a staple food and chemical pesticides to control pests is the dominant paradigm in rice production. In contrast, the use of natural enemies to suppress crop pests has the potential to reduce chemical pesticide inputs in rice production systems. Currently, predators and parasitoids often do not persist in rice production landscapes due to the absence of shelter or nutritional sources. In this study, we modified the existing rice landscape through an eco-engineering technique that aims to increase natural biocontrol agents for crop protection. In this system, planting nectar-rich flowering plants on rice bunds provides food and shelter to enhance biocontrol agent activity and reduce pest numbers, while maintaining grain yield. The abundance of predators and parasitoids and parasitism rates increased significantly in the eco-engineering plots compared to the insecticide-treated and control plots. Moreover, a significantly lower number of principal insect pests and damage symptoms were found in treatments where flowering plants were grown on bunds than in plots where such plants were not grown. This study indicates that manipulating habitat for natural enemies in rice landscapes enhances pest suppression and maintains equal yields while reducing the need for insecticide use in crop fields.
Background Natural enemy abundance in a crop plot depends on its prey presence and also influenced by habitats close to field. Landscape changes are also important factors driving pest and natural enemy population abundance in a specific crop field. Examining these kinds of effects on insect pests or biocontrol agents, as well as analysis of their functional food webs, would be asset to make a fruitful pest management programme at local scales. Therefore, this study was undertaken to evaluate the impact of surrounding landscape on the abundance insect predators in rice field. Results This study revealed a dependency on rice bund margin width, with spider populations increasing with increased bund widths. Conversely, population abundance did not rely on the number of weed species observed on earthen ridge around the rice field. In general, relative abundances of predator populations differed significantly across the three landscapes tested. Among the four predators of rice insect pest, the green mirid bug showed highest number irrespective of landscape. Comparatively, higher predator diversity (Shanon diversity) was observed in landscape I followed by landscape III and landscape II. All landscapes showed different diversity indices indicating heterozygosity existed in each study site. These landscape diversity influences the predator’s abundances at a local scale. Variogram derived from this study also indicated the landscape heterozygosity existed in studied locations which can also explain the predator’s abundances in rice field at locale scale. Conclusion These findings suggest that predators of rice insect pests are landscape specific. Therefore, characterization of each local landscape in Bangladesh rice production landscapes are necessary before planning and implementation of integrated pest management. Geospatial analysis of local landscape would be more effective to analyze such unique characteristics. As a step in this direction, preliminary variography analyses using the RED spectral band of December 2016 LANDSAT 8 imagery propose an initial learning suite of methods for describing useful local characteristics affecting rice pest predators.
The rice leaffolder, Cnaphalocrosis medinalis Güenée (Lepidoptera: Crambidae), has emerged as a serious pest with significant outbreaks over the last decade in several rice‐growing countries, including China and Bangladesh and resulting in heavy rice yield losses. Climate changes (particularly high temperatures in late winter in Bangladesh) coincide with upsurge in outbreaks of this pest. We generated a statistical model using more than two decades of data to show that increased temperatures associate with this upsurge. Over the 22‐year model period, leaffolder populations in November increased significantly, corresponding to significant monthly temperature trends (but not rainfall) over the same period. Utilizing a linear model, we find that increasing temperature interacts with the amount of rainfall. With the variable month as a proxy for all seasonal effects affecting leaffolder abundance, the model reveals a significant correspondence with climate variations compared to average conditions; specifically, the model predicts that increasing maximum temperatures will lead to more leaffolder, while more rain will decrease their abundance. This study suggests that warmer environment contributed to recent outbreaks of leaffolder in rice‐growing countries; thus, climate change increases rice yield losses by increasing pest population in the field.
Currently insect pest management solely depends on chemical pesticide that continuously affects on environment, biodiversity, animal as well as human health. Outbreak of secondary insect pest is also the cost of pesticide use in field leading crop more vulnerable to more pests. These negative impacts of pesticides have provoked growing interest in the adoption of multi-function agricultural biodiversity that promote pest management, creating interesting challenge for traditional approaches to regulatory compliance. To address multi-function agricultural practice, we tested several intercropping systems with mustard and their effect on pest management. Our results revealed that intercropping systems mustard with onion, garlic, radhuni and coriander significantly reduced pest population over sole crop. However, intercropping mustard with wheat and gram increased pest population in mustard field. This result indicated that all crops are not suitable for intercropping system. Among the tested intercropping systems, mustard with onion and coriander significantly reduced branch and flower infestation and increased pod formation per plant. These four intercropping systems did not significantly affect on honeybee pollinator which are crucial for mustard crop yield. A significant linear relationship was also found between honeybee population and pod formation. Our results indicate that suitable intercropping system can be a potential multi-functional agricultural practice for pest management in mustard crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.