The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here autoimmunity ͉ cancer ͉ therapy ͉ hypoxia ͉ inflammation T he coexistence of tumors and antitumor immune cells is currently explained by the inhibition of immune cells in a poorly understood ''hostile'' tumor microenvironment (1-3). This unidentified immunosuppressive mechanism limits promising cancer therapies using antitumor T cells (4-14). We hypothesized that cancerous tissues are protected from antitumor T cells because of immunosuppressive signaling via T cell A2A adenosine receptor (A2AR) (15-17) activated by extracellular adenosine produced from hypoxic tumor (Fig. 1a). Indeed, hypoxic cancerous tissues may be protected by the same hypoxia3adenosine3A2AR pathway that was recently shown to be critical and nonredundant in preventing excessive damage of normal tissues by overactive immune cells in vivo (18). It is well established that some areas of solid tumors often have transient or chronic hypoxia (19,20), which is conducive to extracellular adenosine accumulation (21). Hypoxia has been implicated in mechanisms of tumor protection against ionizing radiation and some chemotherapeutic agents (19) and is associated with poor prognosis (20).T cells, including antitumor T cells, do predominantly express cAMP-elevating Gs protein-coupled high-affinity A2AR and͞or low-affinity A2B adenosine receptors (A2BR) (16,17,(22)(23)(24); the number of A2AR per T cell may determine the intensity of maximal T cell response to adenosine (25, 26). Whereas we focused on A2AR, others have discounted A2 receptors and suggested the A3 adenosine receptors as responsible for inhibition of antitumor killer T cells (27,28). Here we report that genetic deletion of A2AR accomplishes the complete rejection of immunogenic tumors by antitumor CD8 ϩ T cells in the majority (Ϸ60%) of mice, whereas the antagonists of A2 receptors facilitate CD8 ϩ T cell-mediated retardation of tumor growth. Results The Gradient of T Cell-Inhibiting Extracellular Adenosine in Tumors.It was important to confirm the presence of elevated extracellular adenosine levels in cancerous tissues using a reliable method (29). The HPLC analysis and the use of equilibrium dialysis probes demonstrated higher levels of extracellular adenosine (Fig. 1b), increased adenosine metabolism, and the concomitant increase in cAMP (29) in a solid tumor microenvironment (Fig. 7, which is published as supporting information on the PNAS web site). We also confirmed that antitumor CD8 ϩ T cells used in this study do express the cAMP-elevating functional A2AR and A2BR (Fig. 1c). To directly test whether A2AR inhibit antitumor T cells in vivo, we studied the effects of A2AR gene deletion or competitive antagonists on tumor growth in mice using different CD8 ϩ T celldependent cancer immunosurveillance and ad...
The mechanisms of CTL-mediated tumor regression in vivo remain to be fully understood. If CTL do mediate tumor regression in vivo by direct cytotoxicity, this may occur via two major effector mechanisms involving the secretion of perforin/granzymes and/or engagement of Fas by Fas ligand (FasL) expressed by the activated CTL. Although the perforin pathway has been considered the dominant player, it is unclear whether Fas-mediated cytotoxicity is additionally required for optimal tumor rejection. Previously, we produced H-2Ld-restricted CTL reactive against the CMS4 sarcoma, which expresses a naturally occurring rejection Ag recognized by these CTL and harbors a cytokine (IFN-γ plus TNF)-inducible, Fas-responsive phenotype. The adoptive transfer of these CTL to syngeneic BALB/c mice with minimal (day 3 established) or extensive (day 10 established) experimental pulmonary metastases resulted in strong antitumor responses. Here we investigated whether a FasL-dependent CTL effector mechanism was important for optimal tumor regression in this adoptive immunotherapy model. The approach taken was to compare the therapeutic efficacy of wild-type to FasL-deficient (gld) CTL clones by adoptive transfer. In comparison with wild-type CTL, gld-CTL efficiently mediated tumor cytolysis and produced comparable amounts of IFN-γ, after tumor-specific stimulation, as in vitro assessments of Ag recognition. Moreover, gld-CTL mediated comparably potent antitumor effects in a minimal disease setting, but were significantly less effective under conditions of an extensive tumor burden. Overall, under conditions of extensive lung metastases, these data revealed for the first time an important role for a FasL-dependent CTL effector mechanism in optimal tumor regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.