Neuroevolution is a powerful and general technique for evolving the structure and weights of artificial neural networks. Though neuroevolutionary approaches such as NeuroEvolution of Augmenting Topologies (NEAT) have been successfully applied to various problems including classification, regression, and reinforcement learning problems, little work has explored application of these techniques to larger-scale multiclass classification problems. In this paper, NEAT is evaluated in several multiclass classification problems, and then extended via two ensemble approaches: Onevs-All and One-vs-One. These approaches decompose multiclass classification problems into a set of binary classification problems, in which each binary problem is solved by an instance of NEAT. These ensemble models exhibit reduced variance and increasingly superior accuracy as the number of classes increases. Additionally, higher accuracy is achieved early in training, even when artificially constrained for the sake of fair comparison with standard NEAT. However, because the approach can be trivially distributed, it can be applied quickly at large scale to solve real problems. In fact, these approaches are incorporated into Darwin™, an enterprise automatic machine learning solution that also incorporates various other algorithmic enhancements to NEAT. The resulting complete system has proven robust to a wide variety of client datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.