Another benefit of dietary fiber The gut microbiome can modulate the immune system and influence the therapeutic response of cancer patients, yet the mechanisms underlying the effects of microbiota are presently unclear. Spencer et al . add to our understanding of how dietary habits affect microbiota and clinical outcomes to immunotherapy. In an observational study, the researchers found that melanoma patients reporting high fiber (prebiotic) consumption had a better response to checkpoint inhibitor immunotherapy compared with those patients reporting a low-fiber diet. The most marked benefit was observed for those patients reporting a combination of high fiber consumption and no use of over-the-counter probiotic supplements. These findings provide early insights as to how diet-related factors may influence the immune response. —PNK
The intrapulmonary pharmacokinetics of orally administered clarithromycin (500 mg every 12 h for five doses) or erythromycin (250 mg every 6 h for nine doses) were studied in 32 healthy adult volunteers. Four of the subjects, two in the clarithromycin group and two in the erythromycin group, were smokers. Bronchoscopy, bronchoalveolar lavage, and venipuncture were performed at 4, 8, 12, 24, and 48 h after administration of the last dose of clarithromycin and at 4, 8, and 12 h after administration of the last dose of erythromycin. Clarithromycin was measured by high-performance liquid chromatography, and erythromycin was measured by a microbiological assay. No systemic sedation was used. There were no major adverse events. The concentrations of antibiotics in epithelial lining fluid (ELF) were calculated by the urea dilution method. The volumes (mean ؎ standard deviation) of ELF were 1.9 ؎ 2.0 ml and 1.5 ؎ 0.7 ml in the clarithromycin and erythromycin groups, respectively (P > 0.05). There was no effect of smoking on the amount of bronchoalveolar lavage fluid recovered, the volume of ELF, or the number of erythrocytes present in the lavage fluid (P > 0.05 for all comparisons). The total number of alveolar cells, however, was almost threefold greater in the smokers versus that in the nonsmokers (P < 0.05). Clarithromycin was concentrated in ELF (range, 72.1 ؎ 73.0 g/ml at 8 h to 11.9 ؎ 3.6 g/ml at 24 h) and alveolar cells (range, 505.8 ؎ 293.1 g/ml at 4 h to 17.0 ؎ 34.0 g/ml at 48 h). 14-(R)-Hydroxyclarithromycin was also present in these compartments, but at lower concentrations than the parent compound. The concentrations of erythromycin in ELF and alveolar cells were low at 4, 8, and 12 h following the last dose of drug (range, 0 to 0.8 ؎ 0.1 g/ml in ELF and 0 to 0.8 ؎ 1.3 g/ml in alveolar cells). The clinical significance of any antibiotic concentrations in these compartments is unclear. The data suggest, and we conclude, that clarithromycin may be a useful drug in the treatment of pulmonary infections, particularly those caused by intracellular organisms.Clarithromycin is a semisynthetic macrolide antibiotic that contains a 14-member lactone ring (32). It is active against Streptococcus pneumoniae, Haemophilus influenzae group A streptococci, Staphylococcus aureus, Staphylococcus epidermidis, Moraxella catarrhalis, Chlamydia pneumoniae, Mycobacterium pneumoniae, Toxoplasma gondii, Listeria monocytogenes, legionellae, atypical mycobacteria, and Mycobacterium leprae (2,7,19,22,23,25,28,31,38,42). Like other macrolides, clarithromycin is concentrated in phagocytic cells (5,6,9,30), and it is active against intracellularly growing bacteria (1, 15, 36).The kinetics of clarithromycin are nonlinear (11,13,16). The apparent half-life varies with the dose and ranges from 2 to 6 h for clarithromycin and from 2 to 9 h for its 14-(R)-hydroxyclarithromycin metabolite after the administration of doses of 100 to 1,200 mg given orally. The elimination half-life of erythromycin is approximately 1 to 6 h after oral administrat...
The intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime were studied in 68 volunteers who received single, oral doses of azithromycin (0.5 g), clarithormycin (0.5 g), ciprofloxacin (0.5 g), or cefuroxime (0.5 g). In subgroups of four subjects each, the subjects underwent bronchoscopy and bronchoalveolar lavage at timed intervals following drug administration. Drug concentrations, including those of 14-hydroxyclarithromycin (14H), were determined in serum, bronchoalveolar lavage fluid, and alveolar cells (ACs) by high-pressure liquid chromatography. Concentrations in epithelial lining fluid (ELF) were calculated by the urea diffusion method. The maximum observed concentrations (mean +/- standard deviation) of azithromycin, clarithromycin, 14H, ciprofloxacin, and cefuroxime in serum were 0.13 +/- 0.07, 1.0 +/- 0.6, 0.60 +/- 0.41, 0.95 +/- 0.32, and 1.1 +/- 0.3 microgram/ml, respectively (all at 6 h). None of the antibiotics except clarithromycin (39.6 +/- 41.1 micrograms/ml) was detectable in ELF at the 6-h bronchoscopy. The movement into and persistence in cells was different for azithromycin and clarithromycin. In ACs azithromycin was not detectable at 6 h, reached its highest concentration at 120 h, and exhibited the greatest area under the curve (7,403 micrograms.hr ml-1). The peak concentration of clarithromycin (181 +/- 94.1 micrograms/ml) was greater and occurred earlier (6 h), but the area under the curve (2,006 micrograms.hr ml-1) was less than that observed for azithromycin. 14H was detectable in ACs at 6 h (40.3 +/- 5.2 micrograms/ml) and 12 h (32.8 +/- 57.2 micrograms/ml). The peak concentration of ciprofloxacin occurred at 6 h (4.3 +/- 5.2 micrograms/ml), and the area under the curve was 35.0 micrograms.hr ml-1. The data indicate that after the administration of a single dose, azithromycin, clarithromycin, and ciprofloxacin penetrated into ACs in therapeutic concentrations and that only clarithromycin was present in ELF. The correlation of these kinetic observations with clinical efficacy or toxicity was not investigated and is unclear, but the data provide a basis for further kinetic and clinical studies.
The objective of the present study was to evaluate the effects of gender, AIDS, and acetylator status on the steady-state concentrations of orally administered isoniazid in plasma and lungs. Isoniazid was administered at 300 mg once daily for 5 days to 80 adult volunteers. Subjects were assigned to eight blocks according to gender, presence or absence of AIDS, and acetylator status. Blood was obtained prior to administration of the first dose, 1 h after administration of the last dose, and at the completion of bronchoscopy and bronchoalveolar lavage (BAL), which was performed 4 h after administration of the last dose. The metabolism of caffeine was used to determine acetylator status. Standardized bronchoscopy was performed without systemic sedation. The volume of epithelial lining fluid (ELF) recovered was calculated by the urea dilution method. Isoniazid concentrations in plasma, BAL fluid, and alveolar cells (ACs) were measured by high-performance liquid chromatography. AIDS status or gender had no significant effect on the concentrations of isoniazid in plasma at 1 or 4 h. Concentrations in plasma at 4 h and concentrations in ELF were greater in slow acetylators than fast acetylators. The concentration in plasma (1.85 ؎ 1.60 g/ml [mean ؎ standard deviation; n ؍ 80]) at 1 h following administration of the last dose was not significantly different from that in ELF (2.25 ؎ 3.50 g/ml) or ACs (2.61 ؎ 5.01 g/ml). For the entire study group, concentrations in plasma at 1 h were less than 1.0, 2.0, and 3.0 g/ml for 34.7, 60, and 82.7% of the subjects, respectively; concentrations in ELF were less than 1.0, 2.0, and 3.0 g/ml in 30 (37.5%), 53 (66.0%), and 58 (72.5%) of the subjects, respectively; and concentrations in ACs were less than 1.0, 2.0, and 3.0 g/ml in 43 (53.8%), 59 (73.8%), and 65 (81.3%) of the subjects, respectively. The concentrations of orally administered isoniazid in plasma were not affected by gender or the presence of AIDS. The concentrations in plasma at 4 h and the concentrations in ELF, but not the concentrations in ACs, were significantly greater in slow acetylators than fast acetylators. Concentrations in plasma and lungs were low compared to recommended therapeutic concentrations in plasma and published MICs of isoniazid for Mycobacterium tuberculosis. The optimal concentrations of isoniazid in ACs and ELF are unknown, but these data suggest that the drug enters these compartments by passive diffusion and achieves concentrations similar to those found in plasma.Isoniazid is an essential drug in the treatment of tuberculosis. For humans without tuberculosis who received a single 250-mg oral dose of isoniazid, elimination half-lives have been reported to be 1.2 and 3.3 h in fast and slow acetylators, respectively, and peak concentrations in plasma (at 1 h postdosing) have been reported to be 2.44 and 3.64 g/ml, respectively (25) 1993). However, this effect was not demonstrated in Kenyan patients, in whom concentrations in plasma were not different among individuals with or without AIDS or w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.