In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web dataloosely also known as Linked Data -which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web -in terms of scale, unreliability, inconsistency and noise -are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a besteffort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
The focus of web search is moving away from returning relevant documents towards returning structured data as results to user queries. A vital part in the architecture of search engines are link-based ranking algorithms, which however are targeted towards hypertext documents. Existing ranking algorithms for structured data, on the other hand, require manual input of a domain expert and are thus not applicable in cases where data integrated from a large number of sources exhibits enormous variance in vocabularies used. In such environments, the authority of data sources is an important signal that the ranking algorithm has to take into account. This paper presents algorithms for prioritising data returned by queries over web datasets expressed in RDF. We introduce the notion of naming authority which provides a correspondence between identifiers and the sources which can speak authoritatively for these identifiers. Our algorithm uses the original PageRank method to assign authority values to data sources based on a naming authority graph, and then propagates the authority values to identifiers referenced in the sources. We conduct performance and quality evaluations of the method on a large web dataset. Our method is schema-independent, requires no manual input, and has applications in search, query processing, reasoning, and user interfaces over integrated datasets.
In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web dataloosely also known as Linked Data -which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web -in terms of scale, unreliability, inconsistency and noise -are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a besteffort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
Social media such as Twitter generate large quantities of data about what a person is thinking and doing in a particular location. We leverage this data to build models of locations to improve our understanding of a user's geographic context. Understanding the user's geographic context in turn allows us to present information, recommend businesses and services, and place advertisements that are relevant at a hyper-local level.In this paper we create language models of locations using coordinates extracted from geotagged Twitter data. We model locations at varying levels of granularity, from zip code to the country level. We measure the accuracy of these models by the degree to which we can predict the location of an individual tweet, and further by the accuracy with which we can predict the location of a user. We find that we can meet the performance of the industry standard tool for predicting both the tweet and the user, at the country, state and city levels, and far exceed its performance at the hyper-local level, achieving a three-to ten-fold increase in accuracy at the zip code level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.