BackgroundThe purpose of this study was to examine the association between functional movement and overweight and obesity in British children.MethodsData were obtained from 90, 7–10 year old children (38 boys and 52 girls). Body mass (kg) and height (m) were assessed from which body mass index (BMI) was determined and children were classified as normal weight, overweight or obese according to international cut offs. Functional movement was assessed using the functional movement screen.ResultsTotal functional movement score was significantly, negatively correlated with BMI (P = .0001). Functional movement scores were also significantly higher for normal weight children compared to obese children (P = .0001). Normal weight children performed significantly better on all individual tests within the functional movement screen compared to their obese peers (P <0.05) and significantly better than overweight children for the deep squat (P = .0001) and shoulder mobility tests (P = .04). Overweight children scored significantly better than obese in the hurdle step (P = .0001), in line lunge (P = .05), shoulder mobility (P = .04) and active straight leg raise (P = .016).Functional movement scores were not significantly different between boys and girls (P > .05) when considered as total scores. However, girls performed significantly better than boys on the hurdle step (P = .03) and straight leg raise (P = .004) but poorer than boys on the trunk stability push-up (P = .014).ConclusionsThis study highlights that overweight and obesity are significantly associated with poorer functional movement in children and that girls outperform boys in functional movements.
The aim of this study was to investigate the effect of incorporating stretches into a massage recovery treatment after a competitive basketball match on perceptual and physical markers of recovery. Nine men (age: 22 ± 3 years; stature: 191.2 ± 8.5 cm; body mass: 90.9 ± 10.1 kg; and body fat: 12.4 ± 4.7%) and 8 women (age: 21 ± 3 years; stature: 176.4 ± 8.1 cm; body mass: 73.9 ± 9.7 kg; and body fat: 21.9 ± 5.5%) who are national-level basketball players received a massage, a massage and stretching, or no treatment immediately after a competitive match. The perception of overall fatigue and leg soreness was assessed immediately after the treatment and 24 hours later, whereas countermovement jump (CMJ) and repeated sprint ability (RSA) were tested 24 hours after the treatment. Compared with massage, massage and stretching induced lower perception of leg soreness immediately only in women (p ≤ 0.001; (Equation is included in full-text article.)= 0.86), whereas a longer lasting effect was observed in men, with a difference between treatments reported after 24 hours (p ≤ 0.001; (Equation is included in full-text article.)= 0.94). Furthermore, both treatments resulted in a better CMJ performance compared with the control condition in men only (p = 0.0001; (Equation is included in full-text article.)= 0.33), and massage and stretching involved a lower performance decrement during RSA compared with massage in women only (p = 0.015; (Equation is included in full-text article.)= 0.29). The results suggest that women benefit slightly more from the combination treatment than men, and therefore this type of recovery intervention should be adopted by physiotherapists working with women teams in particular.
The present work aimed to evaluate the effect of 3 mg·kg−1 caffeine consumption on the standing and dynamic balance performance of older adults and sought to establish if caffeine ingestion can modulate the influence of a cognitive dual task on balance performance. Twelve apparently healthy participants (8 females) aged >65 years (72 ± 3.7 years) completed the study. Bipedal postural sway, four square step test, timed up and go, Y-balance (anterior reach only) and force-time characteristics of sit-to-stand performance were used to assess standing and dynamic balance. Attention and working memory were assessed using a serial 3s and 7s subtraction task during seated rest and completion of the bipedal standing assessment and Y-balance test. This battery of assessments was completed on two separate occasions, once following the consumption of a non-ergogenic placebo and again following the consumption of 3 mg·kg−1 caffeine. The administration of treatments was randomised, counterbalanced and double-blind. Caffeine reduced performance in the bipedal standing balance assessments, evidenced by an increase in COPML, COPPath, COPVelocity. Performance during the dynamic balance tests was unaffected, other than rate of force development during the sit-to-stand, which was improved following caffeine ingestion. The introduction of a cognitive dual task had either limited effects, or improved facets of bipedal standing balance, whilst performance during the dynamic balance task was significantly reduced. In both balance assessments, there was evidence for a reduction in the performance of the cognitive task when both the balance and cognitive tests were performed simultaneously, with this effect not modulated by caffeine consumption. These findings refute the idea that caffeine ingestion may have positive effects on balance performance. However, despite a caffeine-induced reduction in bipedal standing balance, it is unlikely that caffeine ingestion would exacerbate fall risk given the limited effects in the dynamic balance tests. Future work should establish if these effects are generalisable to older frail participants and if caffeine can modulate the detrimental effects of an acute exercise bout on balance performance.
The effect of caffeine to promote improvements in mood, cognition, and exercise performance has been well established in young and athletic adults. However, little is known about whether such nutritional ergogenic aids are effective in enhancing psychological well-being, physiological or cognitive performance in older adults. This study assesses the ergogenic effect of caffeine on mood, perceptual-motor coupling, and muscular strength in an older human population. Following a familiarization session, 12 apparently healthy volunteers (nine females and three males; 69 ± 6 years) completed two laboratory visits. “Pre ingestion” trials of mood state Brunel Mood State Inventory (BRUMS) and coincidence anticipation performance (Bassin anticipation timer) at slow (3 mph) and fast (8 mph) stimulus speeds were completed on both visits. Using a randomized, double-blind, cross-over design, participants consumed either caffeine (3 mg/kg body mass) or a placebo. Sixty minutes postingestion participants repeated the trials before completing a set of 10 consecutive repetitions of maximal knee extension using isokinetic dynamometry. Rating of perceived exertion (RPE) was assessed following the fifth and final repetition. Caffeine ingestion significantly improved mood state scores for vigor by 17% (P = 0.009) and reduced absolute error by 35% (P = 0.045) during coincidence anticipation assessment at 8 mph compared to placebo. There were no other significant effects. Caffeine ingestion failed to augment maximal voluntary contraction of the knee extensors and RPE did not prove to be significantly different to from placebo (P > 0.33 in each case). Acute caffeine ingestion may not be an effective ergogenic aid for improving muscular strength in older adults but could possibly be used as a nutrition supplement for enhancing mood and improving cognitive performance in daily living tasks where interceptive timing skills are required.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.