Results from the testing of 108 coded chemicals in Chinese hamster ovary (CHO) cells for the induction of chromosome aberrations and sister chromatid exchanges (SCEs) are presented. All chemicals were tested with and without exogenous metabolic activation, using protocols designed to allow testing up to toxic doses. Cell harvest times could also be extended if chemical-induced cell cycle delay was seen. Chromosome aberrations were induced by 43 of the chemicals, and 66 induced SCEs; 37 of the chemicals were positive for both endpoints.
Fas-mediated apoptosis is an important regulator of cell survival, and abnormalities in this system have been shown to result in a number of human pathological conditions. A secreted member of the tumor necrosis factor receptor superfamily, DcR3, was recently reported to be amplified in human lung and colon cancers as a negative regulator of Fas-mediated apoptosis. We identified this gene, which we call M68. M68 genomic DNA, mRNA, and protein levels were examined in a series of human gastrointestinal tract tumors. Using M68 immunohistochemistry and a scoring system similar to that used for HER-2͞neu, we found that M68 protein was overexpressed in 30 of 68 (44%) human adenocarcinomas of the esophagus, stomach, colon, and rectum. Tumors examined by Northern blot revealed M68 mRNA highly elevated in a similar fraction of primary tumors from the same gastrointestinal tract regions, as well as in the colon adenocarcinoma cell lines SW480 and SW1116. Further, we found M68 protein to be overexpressed in a substantial number of tumors in which gene amplification could not be detected by fluorescence in situ hybridization or quantitative genomic PCR, suggesting that overexpression of M68 may precede amplification in tumors. Finally, we find that M68 lies within a four-gene cluster that includes a novel helicase-like gene (NHL) related to RAD3͞ERCC2, a plasma membrane Ras-related GTPase and a member of the stathmin family, amplification or overexpression of which may also contribute to cell growth and tumor progression.
We have identified a group of 8 (among 39) human tumour cell strains deficient in the ability to support the growth of adenovirus 5 preparations treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), but able to support the growth of non-treated adenovirus normally. This deficient behaviour defines the Mer- phenotype. Strains having the Mer- phenotype were found to arise from tumours originating in four different organs. Relative to Mer+ strains, Mer- tumour strains showed greater sensitivity to MNNG-produced killing, greater MNNG-stimulated "DNA repair synthesis and a more rapid MNNG-produced decrease in semi-conservative DNA synthesis. Here we report that (1) Mer- strains are deficient in removing O6-methylguanine (O6-MeG) from their DNA after [Me-14C]MMNG treatment (Table 1); (2) Mer- tumour strains originate from tumours arising in patients having Mer+ normal fibroblasts (Fig. 1a, b); (3) SV40 transformation of (Mer+) human fibroblasts often converts them to Mer- strains (Fig. 1c, d); (4) MNNG produces more sister chromatid exchanges (SCEs) in Mer- than in Mer+ cell strains (Fig. 2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.