Free-standing, accessible thiol (-SH) functions have been installed in robust, porous coordination networks to provide wide-ranging reactivities and properties in the solid state. The frameworks were assembled by reacting ZrCl4 or AlCl3 with 2,5-dimercapto-1,4-benzenedicarboxylic acid (H2DMBD), which features the hard carboxyl and soft thiol functions. The resultant Zr-DMBD and Al-DMBD frameworks exhibit the UiO-66 and CAU-1 topologies, respectively, with the carboxyl bonded to the hard Zr(IV) or Al(III) center and the thiol groups decorating the pores. The thiol-laced Zr-DMBD crystals lower the Hg(II) concentration in water below 0.01 ppm and effectively take up Hg from the vapor phase. The Zr-DMBD solid also features a nearly white photoluminescence that is distinctly quenched after Hg uptake. The carboxyl/thiol combination thus illustrates the wider applicability of the hard-and-soft strategy for functional frameworks.
[RuVI(N)(salchda)(CH3OH)]PF6 (1) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion) reacts readily with 2,3-dimethyl-2-butene at room temperature in the presence of pyridine or 1-methylimidazole to give initially [RuIV(Az1(-H))(salchda)(py)]PF6 (2, Az1 = 2,2,3,3-tetramethylaziridine), which is then slowly reduced to [RuIII(Az1)(salchda)(py)]PF6 (3). 1 also reacts with a variety of aryl-substituted alkenes such as styrene and trans-beta-methylstyrene in the presence of py or 1-MeIm to give the corresponding ruthenium(III) aziridine complexes. The structures of 3 and [RuIII(Az2)(salchda)(1-MeIm)]PF6 (4, Az2 = trans-2-methyl-3-phenylaziridine) have been determined by X-ray crystallography. The Ru-N(aziridine) distances (2.1049, 2.097 A) are consistent with a neutral aziridine ligand. The C-C and C-N distances in the aziridine ligands are all indicative of single bonds.
A highly specific, distinct color change in the crystals of a metal-organic framework with pendant allyl thioether units in response to Pd species was discovered. The color change (from light yellow to orange/brick red) can be triggered by Pd species at concentrations of a few parts per million and points to the potential use of these crystals in colorimetric detection and quantification of Pd(II) ions. The swift color change is likely due to the combined effects of the multiple functions built into the porous framework: the carboxyl groups for bonding with Zn(II) ions to assemble the host network and the thioether and alkene functions for effective uptake of the Pd(II) analytes (e.g., via the alkene-Pd interaction). The resultant loading of Pd (and other noble metal) species into the porous solid also offers rich potential for catalysis applications, and the alkene side chains are amenable to wide-ranging chemical transformations (e.g., bromination and polymerization), enabling further functionalization of the porous networks.
The oxidation of alkanes by various peroxides ((t)BuOOH, H2O2, PhCH2C(CH3)2OOH) is efficiently catalyzed by [Os(VI)(N)Cl4](-)/Lewis acid (FeCl3 or Sc(OTf)3) in CH2Cl2/CH3CO2H to give alcohols and ketones. Oxidations occur rapidly at ambient conditions, and excellent yields and turnover numbers of over 7500 and 1000 can be achieved in the oxidation of cyclohexane with (t)BuOOH and H2O2, respectively. In particular, this catalytic system can utilize PhCH2C(CH3)2OOH (MPPH) efficiently as the terminal oxidant; good yields of cyclohexanol and cyclohexanone (>70%) and MPPOH (>90%) are obtained in the oxidation of cyclohexane. This suggests that the mechanism does not involve alkoxy radicals derived from homolytic cleavage of MPPH but is consistent with heterolytic cleavage of MPPH to produce a metal-based active intermediate. The following evidence also shows that no free alkyl radicals are produced in the catalytic oxidation of alkanes: (1) The product yields and distributions are only slightly affected by the presence of O2. (2) Addition of BrCCl3 does not affect the yields of cyclohexanol and cyclohexanone in the oxidation of cyclohexane. (3) A complete retention of stereochemistry occurs in the hydroxylation of cis- and trans-1,2-dimethylcyclohexane. The proposed mechanism involves initial O-atom transfer from ROOH to [Os(VI)(N)Cl4](-)/Lewis acid to generate [Os(VIII)(N)(O)Cl4](-)/Lewis acid, which then oxidizes alkanes via H-atom abstraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.