Skin lesion segmentation is an imperative step for image analysis and visualization task. Manual segmentation by an expert operator is too timeconsuming and its accuracy may be degraded by different human operators. An automatic segmentation method is therefore required and one of the important parts in any classification system. In this work, more accurate skin lesion segmentation by Pixel-by-Pixel (PbP) approach using deep learning is presented. Before employing PbP approach, dermoscopic images are prepared for more accurate segmentation by Top-Hat Transform (THT) which removes the hair in the skin regions. The PbP approach has four stages; study the training images consists of skin lesions, construction of deep learning network followed by training it and finally evaluate the network with testing images. The evaluation of PbP approach is carried out using PH 2 database images. Results of PbP approach in terms of Jaccard Index (JI), Accuracy (Acc) and DIce Coefficients (DIC) show the effectiveness of the system for skin lesion segmentation.
This paper presents an investigation factors that need to be considered in the design and selection of components for the conversion of a fleet of plug-in electric golf carts at Princess Nourah Bint Abdelrahman University, (PNU), Riyadh, Kingdom of Saudi Arabia (KSA), into solar power energy. Currently, the plug-in electric golf carts are powered by a set of deep-cycle lead-acid battery packs consisting of six units. Solar energy systems (photovoltaics and solar thermal) provide significant environmental benefits and opportunities over the traditional and conventional sources. Therefore, they can contribute positively to many aspects of the built environment and societies. There are many factors that affect the energy generated from the solar panel system. These include type and dimension of the solar panels, weight, speed, acceleration, and other characteristics of the used golf carts, and the energy efficiency of the solar energy system, as main factors that affect the green energy generated to operate the carts. The energy values needed to power the electric cart were calculated and optimized using traction energy calculation and optimized using a fuzzy logic analysis. The fuzzy logic system was developed to assess the impacts of varying dimensions of solar panel, vehicle speed, and weight on the energy generation. Initial calculations show that the replacement cost of the batteries can be up to approximately 75 percent of the operating cost. Together with the indirect cost benefits of achieving zero tail-pipe emission and the comfort of silent operation, the cost of operation using solar energy can be significant when compared with the cost of battery replacement. In order to achieve better efficiency, supercapacitors can be investigated to replace the conventional batteries. The use of fuzzy logic successfully facilitated the optimization of system operation conditions for best performance. In this study, fuzzy logic and calculated data were used as an optimization tool. Future work may be able to use fuzzy logic with experimental data to demonstrate feasibility of utilizing fuzzy logic systems to assess energy generation processes. Future investigations could also include investigation of other factors and methodologies, such as various types of batteries, supercapacitors, solar panels, and types of golf carts, together with different techniques of artificial intelligence to assess the optimum system specifications.
Electric vehicles (EVs) have become popular in reducing the negative impact of ICE automobiles on the environment. EVs have been predicted to be an important mode of mass transit around the globe in recent years. Several charging stations in island and remote areas are dependent on off-grid power sources and renewable energy. Solar energy is used in the daytime as it is based on several environmental components. The creation of efficient power trackers is necessary for solar arrays to produce power at their peak efficiency. To deliver energy during emergencies and store it in case there is an excess, energy storage systems are required. It has long been known that reliable battery management technology is essential for maintaining precise battery charge levels and avoiding overcharging. This study suggests an ideal deep-learning-assisted solar-operated off-board smart charging station (ODL-SOOSCS) design method as a result. The development of on-board smart charging for mass transit EVs is the main goal of the ODL-SOOSCS technique that is being described. In the ODL-SOOSCS approach described here, a perovskite solar film serves as the generating module, and the energy it generates is stored in a module with a hybrid ultracapacitor and a lithium-ion battery. Broad bridge converters and solar panels are incorporated into the deep belief network (DBN) controller, which doubles as an EV charging station. An oppositional bird swarm optimization (OBSO) algorithm is used as a hyperparameter optimizer to improve the performance of the DBN model. Moreover, an MPPT device is exploited for monitoring and providing maximal output of the solar panel if the power sources are PV arrays. The proposed system combines the power of metaheuristic optimization algorithms with deep learning techniques to create an efficient and smart charging station for mass transport passenger vehicles. This integration of two powerful technologies is a novel approach toward solving the complex problem of charging electric vehicles in mass transportation systems. The experimental validation of the ODL-SOOSCS technique is tested on distinct converter topologies. A widespread experimental analysis assures the promising performance of the ODL-SOOSCS method over other current methodologies.
In this paper a series hybrid powertrain is presented; factoring in the existing fossil fuel infrastructure established in oil producing economies, environmental impact, drivability characteristics, utilization patterns, advancement in automobile control sub-systems and appropriateness of technology. The prime mover employed for this hybrid are electric hub motors, powered by a super capacitor bank [SCB], which in turn is connected in with a relatively smaller battery pack [BP]. An IC engine is added in the loop to energize the SCB when the charge in the BP falls below the sub-optimal level; and, when the destination or fast charging facility are not reachable with the charge left in the SCB-BP module. A fast charger or a regular charger is plugged in to charge the BP when the vehicle is stationary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.