Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.
Plant growth-promoting bacteria (PGPB) are capable of alleviating environmental stress and eliciting tolerance in plants to promote their growth. Several PGPB elicit physical and/or chemical changes related to plant defense in the form of induced systemic resistance (ISR) under biotic stress. Researchers emphasized that PGPBelicited ISR has suppressed plant diseases caused by a range of pathogens in both the greenhouse and field. PGPB-elicited physical and chemical changes in plants result in enhanced tolerance to drought, salt, and other factors that have been described as a form of induced systemic tolerance under abiotic stress. This review will focus on recent research concerning interactions between PGPB and plants under biotic and abiotic stresses. The use of PGPB requires precise understanding of the interactions between plant-bacteria, among bacteria-microbiota, and how biotic and abiotic factors influence these relationships. Consequently, continued research is needed to develop new approaches to ameliorate the efficiency of PGPB and to understand the ecological, genetic, and biochemical relationships in their habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.