We describe how randomized benchmarking can be used to reconstruct the unital part of any trace-preserving quantum map, which in turn is sufficient for the full characterization of any unitary evolution, or more generally, any unital trace-preserving evolution. This approach inherits randomized benchmarking's robustness to preparation, measurement, and gate imperfections, therefore avoiding systematic errors caused by these imperfections. We also extend these techniques to efficiently estimate the average fidelity of a quantum map to unitary maps outside of the Clifford group. The unitaries we consider correspond to large circuits commonly used as building blocks to achieve scalable, universal, and fault-tolerant quantum computation. Hence, we can efficiently verify all such subcomponents of a circuit-based universal quantum computer. In addition, we rigorously bound the time and sampling complexities of randomized benchmarking procedures, proving that the required non-linear estimation problem can be solved efficiently.Comment: v1: 13 pages, 2 figures v2: Update to published version, including correction to proof in Appendix
An important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the systematic errors in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors but is both time consuming (when one wants to learn only a few key parameters) and usually inaccurate without resources such as perfect state preparation and measurement, which might not be available. With the goal of efficiently and accurately estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge key systematic parameters (specifically, amplitude and off-resonance errors) in a universal single-qubit gate set with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling, and do so without entanglement and entirely within a single-qubit Hilbert space. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.