Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.
We report a metal-free strategy for the chain-end modification of RAFT polymers utilizing visible light. By turning the light source on or off, the reaction pathway can be switched from either complete desulfurization (hydrogen chain-end) or cleavage (thiol chain-end). The versatility of this process is exemplified by application to a wide range of polymer backbones under mild, quantitative conditions using commercial reagents.
Herein, we report the development of a scalable and synthetically robust building block based on norbornadiene (NBD) that can be broadly incorporated into a variety of macromolecular architectures using traditional living polymerization techniques. By taking advantage of a selective and rapid deprotection with tetrazine, highly reactive "masked" cyclopentadiene (Cp) functionalities can be introduced into synthetic polymers as chain-end groups in a quantitative and efficient manner. The orthogonality of this platform further enables a cascade "click" process where the "unmasked" Cp can rapidly react with dienophiles, such as maleimides, through a conventional Diels−Alder reaction. Coupling proceeds with quantitative conversions allowing high molecular weight star and dendritic block copolymers to be prepared in a single step under ambient conditions.
We report a simple and efficient transformation of thiol and thiocarbonylthio functional groups to bromides using stable and commercially available brominating reagents. This procedure allows for the quantitative conversion of a range of small molecule thiols (including primary, secondary and tertiary) to the corresponding bromides under mild conditions, as well as the facile chain-end modification of polystyrene (PS) homopolymers and block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Specifically, the direct chain-end bromination of PS prepared by RAFT was achieved, where the introduced terminal bromide remained active for subsequent modification or chain-extension using classical atom transfer radical polymerization (ATRP). This transformation sets the foundation for bridging RAFT and ATRP, two of the most widely used controlled radical polymerization (CRP) strategies, and enables the preparation of chain-end functionalized block copolymers not directly accessible using a single CRP technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.