Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).
Opportunistic pathogens represent a unique challenge because they establish and grow within drinking water systems, yet the factors stimulating their proliferation are largely unknown. The purpose of this study was to examine the influence of pipe materials, disinfectant type, and water age on occurrence and persistence of three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa), broader genera (Legionella and mycobacteria), and two amoeba hosts (Acanthamoeba spp. and Hartmanella vermiformis). Triplicate simulated distribution systems (SDSs) compared iron, cement, and PVC pipe materials fed either chlorinated or chloraminated tap water and were sampled at water ages ranging from 1 day to 5.7 days. Quantitative polymerase chain reaction quantified gene copies of target microorganisms in both biofilm and bulk water. Legionella, mycobacteria, P. aeruginosa, and both amoebas naturally colonized the six SDSs, but L. pneumophila and M. avium were not detected. Disinfectant type and dose was observed to have the strongest influence on the microbiota. Disinfectant decay was noted with water age, particularly in chloraminated SDSs (due to nitrification), generally resulting in increased microbial detection frequencies and densities with water age. The influence of pipe material became apparent at water ages corresponding to low disinfectant residual. Each target microbe appeared to display a distinct response to disinfectant type, pipe materials, water age, and their interactions. Differences between the first and the second samplings (e.g., appearance of Legionella, reduction in P. aeruginosa and Acanthamoeba) suggest a temporally dynamic drinking water microbial community.
Traditional lead (Pb) profiling, or collecting sequential liters of water that flow from a consumer tap after a stagnation event, has recently received widespread use in understanding sources of Pb in drinking water and risks to consumer health, but has limitations in quantifying particulate Pb risks. A new profiling protocol was developed in which a series of traditional profiles are collected from the same tap at escalating flow rates. The results revealed marked differences in risks of Pb exposure from one consumer home to another as a function of flow rate, with homes grouped into four risk categories with differing flushing requirements and public education to protect consumers. On average, Pb concentrations detected in water at high flow without stagnation were at least three to four times higher than in first draw samples collected at low flow with stagnation, demonstrating a new "worst case" lead release scenario, contrary to the original regulatory assumption that stagnant, first draw samples contain the highest lead concentrations. Testing also revealed that in some cases water samples with visible particulates had much higher Pb than samples without visible particulates, and tests of different sample handling protocols confirmed that some EPA-allowed methods would not quantify as much as 99.9% of the Pb actually present (avg. 27% of Pb not quantified).
Although many guidance documents have been developed to inform the design and operation of building water systems to ensure safe water quality, there is a lack of consensus on some topics. This study interviewed 22 subject matter experts (SMEs) to identify topics of concern for managing water quality in buildings and compared SME views with information available on these topics in 15 systematically screened important guidance documents. The study found 18 design and 11 operational topics as critical for managing water quality in buildings. No one guidance document addressed all these topics, suggesting that a compendium of available guidance is needed. SMEs most frequently recommended temperature and residual disinfectant measurements as good parameters for monitoring overall building water quality. Both SME and guidance document recommendations for temperature for controlling opportunistic pathogen growth were reasonably consistent with water heater setpoint >60 °C. However, hot water temperature recommendations varied between 50 and 55 °C for other locations (i.e., the water temperature at the tap or end of the return loop). On the contrary, recommendations for disinfectant residual levels (0.2–2.0 mg/L), flushing frequency (1–14 days), and allowable time for hot water to reach the tap (10–60 s) were not consistent. While this study was able to reconcile diverging views on some of the water quality topics, such as identifying common guidance for water heater set point to at least 60 °C, it also highlights lack of definitive guidance on other critical topics, such as residual level, flushing frequency, hot water time to tap, and the use of thermostatic mixing valves, indicating that these are significant knowledge gaps that need further investigation. The study concludes that there is a need for developing evidence-based guidance, particularly on the topics where expert opinions diverged.
The influence of temperature on the solubility of representative lead solids present in drinking-water systems and the lead release to potable water was examined. Temperature had surprisingly little effect on the dissolution of cerrusite, hydrocerussite, chloropyromorphite, lead orthophosphate, and lead oxide solids; however, in the presence of natural organic matter, lead oxide dissolution was 36 times greater (36 versus 1277 ppb) at 20 °C compared to 4 °C due to accelerated reductive dissolution. The solubility of plumbonacrite was three times higher at 20 °C compared to 4 °C (260 versus 92 ppb). In full-scale pipe rigs using harvested lead service lines in Washington, DC and Providence, RI, dissolved lead release increased by as much as 2-3 times, and particulate lead increased 2-6 times in the summer versus winter. In four of the eight homes sampled in Providence, RI, dissolved lead levels were three times higher during the summer compared to the winter, and five homes had copper levels that were 2.5-15 times greater in the winter. These studies demonstrate a need to better understand how lead service line scales vary because patterns of release and temperature dependency sometimes vary markedly, even within the same distribution system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.