We describe an adaptive dose escalation scheme for use in cancer phase I clinical trials. The method is fully adaptive, makes use of all the information available at the time of each dose assignment, and directly addresses the ethical need to control the probability of overdosing. It is designed to approach the maximum tolerated dose as fast as possible subject to the constraint that the predicted proportion of patients who receive an overdose does not exceed a specified value. We conducted simulations to compare the proposed method with four up-and-down designs, two stochastic approximation methods, and with a variant of the continual reassessment method. The results showed the proposed method effective as a means to control the frequency of overdosing. Relative to the continual reassessment method, our scheme overdosed a smaller proportion of patients, exhibited fewer toxicities and estimated the maximum tolerated dose with comparable accuracy. When compared to the non-parametric schemes, our method treated fewer patients at either subtherapeutic or severely toxic dose levels, treated more patients at optimal dose levels and estimated the maximum tolerated dose with smaller average bias and mean squared error. Hence, the proposed method is promising alternative to currently used cancer phase I clinical trial designs.
We study a one-dimensional telegraph process (Mt)t≥0describing the position of a particle moving at constant speed between Poisson times at which new velocities are chosen randomly. The exact distribution ofMtand its first two moments are derived. We characterize the level hitting times ofMtin terms of integro-differential equations which can be solved in special cases.
We consider growth-collapse processes (GCPs) that grow linearly between random partial collapse times, at which they jump down according to some distribution depending on their current level. The jump occurrences are governed by a state-dependent rate function r(x). We deal with the stationary distribution of such a GCP, (Xt)t≥0, and the distributions of the hitting times Ta = inf{t ≥ 0 : Xt = a}, a > 0. After presenting the general theory of these GCPs, several important special cases are studied. We also take a brief look at the Markov-modulated case. In particular, we present a method of computing the distribution of min[Ta, σ] in this case (where σ is the time of the first jump), and apply it to determine the long-run average cost of running a certain Markov-modulated disaster-ridden system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.