High-quality online open courses have a wide audience. To further improve the quality of these courses, it is critical to analyze the teaching behaviors in class, which are the manifestation of the overall quality of the teacher. Considering the popularity of image processing-based behavior recognition in many disciplines, this paper explores deep into the teaching features and behaviors in online open courses based on image processing. Firstly, a coding scale was designed for teaching behaviors in online open courses. Next, the principle of optical flow solving was explained for teaching video images. Then, a teaching behavior feature extraction model was established based on dual-flow deep CNN, and used to extract the key points of teacher body and the behavior features of the teacher. After that, a teaching behavior recognition method was developed combining histogram of oriented gradients (HOG) and support vector machine (SVM) to accurately allocate the teaching features and behaviors to the corresponding teaching links. Finally, the proposed model was proved effective through experiments. Based on the recognized teaching behaviors, the frequency and duration of such behaviors were subject to comparative analysis, revealing the teaching features in high-quality online open courses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.