Solar energy is a costless and readily available form of energy that has shown to be one of the cleanest and most plentiful renewable energy sources. Various large-scale solar photovoltaic (PV) facilities are being utilized to minimize pollution and carbon emissions generated by fossil energy in many nations across the world. The power sequence of PV is influenced by a variety of diverse variables, and it is very unpredictable and volatile. Unlike the distributed PVs, the centralized PVs have the same intensity and location. The obstruction of clouds causes minor variations in the output power of the PV, making the power forecasting more difficult. To solve the aforementioned difficulties, this article provides a new neural network-based technique for PV power optimization and forecasting. The first stage is to create a cloud trajectory tracking system based on cloud photos taken from the ground. Second, a cloud trajectory tracking-based irradiance coefficient prediction model was built. Then, to increase forecast accuracy, build an error correcting model. For verification, data from a centralized solar power station was used. The results show that the proposed algorithm has technological applications and may greatly improve prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.