Widespread sharing of data from electronic health records and patient-reported outcomes can strengthen the national capacity for conducting cost-effective clinical trials and allow research to be embedded within routine care delivery. While pragmatic clinical trials (PCTs) have been performed for decades, they now can draw on rich sources of clinical and operational data that are continuously fed back to inform research and practice. The Health Care Systems Collaboratory program, initiated by the NIH Common Fund in 2012, engages healthcare systems as partners in discussing and promoting activities, tools, and strategies for supporting active participation in PCTs. The NIH Collaboratory consists of seven demonstration projects, and seven problem-specific working group 'Cores', aimed at leveraging the data captured in heterogeneous 'real-world' environments for research, thereby improving the efficiency, relevance, and generalizability of trials. Here, we introduce the Collaboratory, focusing on its Phenotype, Data Standards, and Data Quality Core, and present early observations from researchers implementing PCTs within large healthcare systems. We also identify gaps in knowledge and present an informatics research agenda that includes identifying methods for the definition and appropriate application of phenotypes in diverse healthcare settings, and methods for validating both the definition and execution of electronic health records based phenotypes.
Further research focused on defining the clinical characteristics of standard diabetes cohorts is important to identify appropriate phenotype definitions for health, policy, and research.
Purpose
Data generated in the care of patients are widely used to support clinical research and quality improvement, which has hastened the development of self-service query tools. User interface design for such tools, execution of query activity, and underlying application architecture have not been widely reported, and existing tools reflect a wide heterogeneity of methods and technical frameworks. We describe the design, application architecture, and use of a self-service model for enterprise data delivery within Duke Medicine.
Methods
Our query platform, the Duke Enterprise Data Unified Content Explorer (DEDUCE), supports enhanced data exploration, cohort identification, and data extraction from our enterprise data warehouse (EDW) using a series of modular environments that interact with a central keystone module, Cohort Manager (CM). A data-driven application architecture is implemented through three components: an application data dictionary, the concept of “smart dimensions”, and dynamically-generated user interfaces.
Results
DEDUCE CM allows flexible hierarchies of EDW queries within a grid-like workspace. A cohort “join” functionality allows switching between filters based on criteria occurring within or across patient encounters. To date, 674 users have been trained and activated in DEDUCE, and logon activity shows a steady increase, with variability between months. A comparison of filter conditions and export criteria shows that these activities have different patterns of usage across subject areas.
Conclusions
Organizations with sophisticated EDWs may find that users benefit from development of advanced query functionality, complimentary to the user interfaces and infrastructure used in other well-published models. Driven by its EDW context, the DEDUCE application architecture was also designed to be responsive to source data and to allow modification through alterations in metadata rather than programming, allowing an agile response to source system changes.
Researchers using EHR-based phenotype definitions should clearly specify the characteristics that comprise the definition, variations of ADA criteria, and how different phenotype definitions and components impact the patient populations retrieved and the intended application. Careful attention to phenotype definitions is critical if the promise of leveraging EHR data to improve individual and population health is to be fulfilled.
Background
Comorbid diabetes and substance use diagnoses (SUD) represent a hazardous combination, both in terms of healthcare cost and morbidity. To date, there is limited information about the association of SUD and related mental disorders with type 2 diabetes mellitus (T2DM).
Methods
We examined the associations between T2DM and multiple psychiatric diagnosis categories, with a focus on SUD and related psychiatric comorbidities among adults with T2DM. We analyzed electronic health record (EHR) data on 170,853 unique adults aged ≥18 years from the EHR warehouse of a large academic healthcare system. Logistic regression analyses were conducted to estimate the strength of an association for comorbidities.
Results
Overall, 9% of adults (n=16,243) had T2DM. Blacks, Hispanics, Asians, and Native Americans had greater odds of having T2DM than whites. All 10 psychiatric diagnosis categories were more prevalent among adults with T2DM than among those without T2DM. Prevalent diagnoses among adults with T2MD were mood (21.22%), SUD (17.02%: tobacco 13.25%, alcohol 4.00%, drugs 4.22%), and anxiety diagnoses (13.98%). Among adults with T2DM, SUD was positively associated with mood, anxiety, personality, somatic, and schizophrenia diagnoses.
Conclusions
We examined a large diverse sample of individuals and found clinical evidence of SUD and psychiatric comorbidities among adults with T2DM. These results highlight the need to identify feasible collaborative care models for adults with T2DM and SUD related psychiatric comorbidities, particularly in primary care settings, that will improve behavioral health and reduce health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.