BackgroundMesenchymal stem cells (MSCs) attenuate lung injury in experimental models of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1), a chemokine secreted by MSCs, modulates angiogenesis and stem cell recruitment. Here we tested the hypothesis that SDF-1 mediates MSC protective effects in experimental BPD by modulating angiogenesis.MethodsSDF-1 was knocked down in MSCs using lentiviral vectors carrying anti-SDF-1 short hairpin RNA (MSC-SDF KD). Non-silencing short hairpin RNA was used as control (MSC-NS control). Newborn rats exposed to normoxia or hyperoxia (FiO2 = 0.85) for 3 weeks, were randomly assigned to receive a single intra-tracheal injection (IT) of MSC-NS control or MSC-SDF KD (1 × 106 cells/50 μl) or placebo on postnatal day 7. The degree of alveolarization, lung angiogenesis, inflammation, and pulmonary hypertension (PH) were assessed at postnatal day 21.ResultsAdministration of IT MSC-NS control improved lung alveolarization, angiogenesis and inflammation, and attenuated PH in newborn rats with hyperoxia-induced lung injury (HILI). In contrast, knockdown of SDF-1 in MSCs significantly reduced their beneficial effects on alveolarization, angiogenesis, inflammation and PH.ConclusionsThe therapeutic benefits of MSCs in neonatal HILI are in part mediated by SDF-1, through anti-inflammatory and angiogenesis promoting mechanisms. Therapies directly targeting this chemokine may provide a novel strategy for the treatment of BPD.
Recent studies suggest that bone marrow (BM)-derived stem cells have therapeutic efficacy in neonatal hyperoxia-induced lung injury (HILI). c-kit, a tyrosine kinase receptor that regulates angiogenesis, is expressed on several populations of BM-derived cells. Preterm infants exposed to hyperoxia have decreased lung angiogenesis. Here we tested the hypothesis that administration of BM-derived c-kit+ cells would improve angiogenesis in neonatal rats with HILI. To determine whether intratracheal (IT) administration of BM-derived c-kit+ cells attenuates neonatal HILI, rat pups exposed to either normobaric normoxia (21% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to P15 were randomly assigned to receive either IT BM-derived green fluorescent protein (GFP)+ c-kit− cells (PL) or BM-derived GFP+ c-kit+ cells on P8. The effect of cell therapy on lung angiogenesis, alveolarization, pulmonary hypertension, vascular remodeling, cell proliferation, and apoptosis was determined at P15. Cell engraftment was determined by GFP immunostaining. Compared to PL, the IT administration of BM-derived c-kit+ cells to neonatal rodents with HILI improved alveolarization as evidenced by increased lung septation and decreased mean linear intercept. This was accompanied by an increase in lung vascular density, a decrease in lung apoptosis, and an increase in the secretion of proangiogenic factors. There was no difference in pulmonary vascular remodeling or the degree of pulmonary hypertension. Confocal microscopy demonstrated that 1% of total lung cells were GFP+ cells. IT administration of BM-derived c-kit+ cells improves lung alveolarization and angiogenesis in neonatal HILI, and this may be secondary to an improvement in the lung angiogenic milieu.
Background: Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal-derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. It is not known if antagonism of CXCR4 alleviates lung inflammation in neonatal hyperoxia-induced lung injury. Objective: We aimed to determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods: Newborn rats exposed to normoxia (room air, RA) or hyperoxia (FiO2 = 0.9) from postnatal day 2 (P2) to P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis and inflammation were evaluated at P16. Results: Compared to the RA pups, hyperoxic PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in the macrophage and neutrophil counts in the bronchoalveolar lavage fluid and reduced lung myeloperoxidase activity. Conclusion: CXCR4 antagonism decreases lung inflammation and improves alveolar and vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.