Heartbeat stars are a class of eccentric binary stars with short-period orbits and characteristic “heartbeat” signals in their light curves at periastron, caused primarily by tidal distortion. In many heartbeat stars, tidally excited oscillations can be observed throughout the orbit, with frequencies at exact integer multiples of the orbital frequency. Here, we characterize the tidally excited oscillations in the heartbeat stars KIC 6117415, KIC 11494130, and KIC 5790807. Using Kepler light curves and radial-velocity measurements, we first model the heartbeat stars using the binary modeling software ELLC, including gravity darkening, limb darkening, Doppler boosting, and reflection. We then conduct a frequency analysis to determine the amplitudes and frequencies of the tidally excited oscillations. Finally, we apply tidal theories to stellar structure models of each system to determine whether chance resonances can be responsible for the observed tidally excited oscillations, or whether a resonance-locking process is at work. We find that resonance locking is likely occurring in KIC 11494130, but not in KIC 6117415 or KIC 5790807.
The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the same natal material and thus the stellar members are expected to have very similar physical attributes. However, Par 1802's stars have significantly different temperatures despite their identical (within 3%) masses of about 0.39 solar mass. The leading proof-of-concept idea is that a third companion gravitationally induced the two stars to orbit closer than their Roche-limit, which facilitated heating through tidal effects. Here we expand on this idea and study the three-body dynamical evolution of such a system, including tidal and pre-main-sequence evolution. We also include tidal heating and mass transfer at the onset of Roche-limit Crossing. We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally explain the observed temperature discrepancy. We also predict the orbital configuration of the possible tertiary companion. Finally we suggest that the dynamical evolution of such a system has pervasive consequences. We expect an abundance of systems to undergo mass transfer during their pre-main-sequence time, which can cause temperature differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.