SUMMARY Exhausted CD8+ T cells (TEX) in chronic infections and cancer have limited effector function, high inhibitory receptor co-expression and extensive transcriptional changes compared to effector (TEFF) or memory (TMEM) CD8+ T cells. TEX are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, TEX are a distinct immune subset, with a unique chromatin landscape compared to TEFF and TMEM. However, the mechanisms governing the transcriptional and epigenetic development of TEX remain unknown. Here, we identify the HMG-box transcription factor TOX as a central regulator of TEX. TOX is largely dispensable for TEFF and TMEM formation, but is critical for exhaustion and without TOX TEX do not form. TOX is induced by calcineurin and NFAT2 and operates in a feed-forward loop to become calcineurin independent and sustained in TEX. Thus, robust TOX expression results in commitment to TEX by translating persistent stimulation into a distinct TEX transcriptional and epigenetic developmental program.
We have identi®ed a novel protein, BAP1, which binds to the RING ®nger domain of the Breast/Ovarian Cancer Susceptibility Gene product, BRCA1. BAP1 is a nuclearlocalized, ubiquitin carboxy-terminal hydrolase, suggesting that deubiquitinating enzymes may play a role in BRCA1 function. BAP1 binds to the wild-type BRCA1-RING ®nger, but not to germline mutants of the BRCA1-RING ®nger found in breast cancer kindreds. BAP1 and BRCA1 are temporally and spatially coexpressed during murine breast development and remodeling, and show overlapping patterns of subnuclear distribution. BAP1 resides on human chromosome 3p21.3; intragenic homozgyous rearrangements and deletions of BAP1 have been found in lung carcinoma cell lines. BAP1 enhances BRCA1-mediated inhibition of breast cancer cell growth and is the ®rst nuclearlocalized ubiquitin carboxy-terminal hydrolase to be identi®ed. BAP1 may be a new tumor suppressor gene which functions in the BRCA1 growth control pathway.
TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1 + Ly108 + PD-1 + CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1 Hi effectors while fostering KLRG1 Lo Tex precursor cells, and PD-1 stabilized this TCF-1 + Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcationdriving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.
A selection for yeast mutants resistant to GAL4-VP16-induced toxicity previously identified two genes, ADA2 and ADA3, which may function as adaptors for some transcriptional activation domains and thereby facilitate activation. Here we identify two new genes by the same selection, one of which is identical to GCN5. We show that gcn5 mutants share properties with ada mutants, including slow growth, temperature sensitivity and reduced activation by the VP16 and GCN4 activation domains. Double mutant studies suggest that ADA2 and GCN5 function together in a complex or pathway. Moreover, we demonstrate that GCN5 binds to ADA2 both by the two-hybrid assay in vivo and by co-immunoprecipitation in vitro. This suggests that ADA2 and GCN5 are part of a heteromeric complex that mediates transcriptional activation. Finally, we demonstrate the functional importance of the bromodomain of GCN5, a sequence found in other global transcription factors such as the SWIISNF complex and the TATA binding protein-associated factors. This domain is not required for the interaction between GCN5 and ADA2 and thus may mediate a more general activity of transcription factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.