Toll-like receptors (TLRs) and members of their signalling pathway play an important role in the initiation of the innate immune response to a wide variety of pathogens1,2,3. The adaptor protein TIRAP mediates downstream signalling of 5,6. We report a case-control genetic association study of 6106 individuals from Gambia, Kenya, United Kingdom, and Vietnam, with invasive pneumococcal disease, bacteraemia, malaria and tuberculosis. Thirty-three SNPs were genotyped, including TIRAP S180L. Heterozygous carriage of this variant was found to associate independently with all four infectious diseases in the different study populations (P=0.003, OR=0.59, 95%CI 0.42-0.83 for IPD; P=0.003, OR=0.40, 95%CI 0.21-0.77 for bacteraemia; P=0.002, OR=0.47, 95%CI 0.28-0.76 for malaria; P=0.008, OR=0.23 95%CI 0.07-0.73 for tuberculosis). Substantial support for a protective effect of S180L heterozygosity against infectious diseases was observed when the study groups were combined (N=6106, OverallCorrespondence should be addressed on genetics to AVSH (adrian.hill@well.ox.ac.uk) In the UK population, heterozygosity at TIRAP S180L was associated with protection from invasive pneumococcal disease (3×2 χ 2 =8.72, P=0.013, Table 1). An excess of mutant homozygotes amongst IPD cases (Table 1) was also observed in this UK population. TIRAP S180L was then examined in a separate group of UK individuals with thoracic empyema and a second control group. Although no association was observed between genotype and susceptibility to thoracic empyema overall (n=584, 3×2 χ 2 =0.63, P=0.73), analysis of the small subgroup of individuals with pneumococcal empyema revealed a non-significant trend towards association (3×2 χ 2 =5.05, P=0.080; Table 1). Interestingly, an excess of mutant homozygotes was again observed amongst this second group of IPD cases (Table 1).We then studied TIRAP S180L in a second population with invasive bacterial disease, comprising Kenyan children with well-defined bacteraemia. Although the mutant allele was found to be less common in the Kenyan population than in UK individuals, the same pattern of association was observed. The TIRAP S180L heterozygotes were significantly more common amongst community controls (5.9%), compared to individuals with bacteraemia (2.4%) (2×2 χ 2 =9.05, P=0.003; Table 1). The heterozygote protective effect of the S180L locus was also significant within the subgroup of 164 Kenyan children with pneumococcal bacteraemia (F exact =0.024, Table 1), thus replicating the findings in the UK studies.In the Gambian malaria case-control study, TIRAP S180L heterozygosity demonstrated a significant protective effect against both general malaria (Wald=8.35, P=0.004, Table 1) and severe malaria (Wald=8.706, P=0.003, Table 1). This result was replicated in a second malaria case-control study, this time in a Vietnamese population whose design included only cases of severe malaria: TIRAP S180L heterozygotes were again found to be more prevalent Finally, the possible effect of the TIRAP S180L polymorphism on ...
Malaria continues to claim the lives of more children worldwide than any other infectious disease, and improved understanding of disease immunology is a priority for the development of new therapeutic and vaccination strategies. Fc␥RIIa (CD32) contains a polymorphic variant (H/R131) that has been associated with variability in susceptibility to both bacterial diseases and Plasmodium falciparum parasitemia. We investigated the role of this polymorphism in West Africans with mild and severe malarial disease. The HH131 genotype was significantly associated with susceptibility to severe malaria (P ס 0.03, odds ratio ס 1.40, 95% confidence interval ס 1.02−1.91). In contrast to studies of parasitemia, the presence of the R131 allele, rather than the RR131 genotype, appeared to be the important factor in protection from disease. This is the first evidence for an association between CD32 polymorphism and severe malaria and provides an example of balancing selective pressures from different infectious diseases operating at the same genetic locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.