Cardiac myocyte atrophy and the resulting decreases to the left ventricular mass and dimensions are well documented in spinal cord injury. Therapeutic interventions that increase preload can increase the chamber size and improve the diastolic filling ratios; however, there are no data describing cardiac adaptation to chronic afterload increases. Research from our center has demonstrated that spinal cord epidural stimulation (scES) can normalize arterial blood pressure, so we decided to investigate the effects of scES on cardiac function using echocardiography. Four individuals with chronic, motor-complete cervical spinal cord injury were implanted with a stimulator over the lumbosacral enlargement. We assessed the cardiac structure and function at the following time points: (a) prior to implantation; (b) after scES targeted to increase systolic blood pressure; (c) after the addition of scES targeted to facilitate voluntary (i.e., with intent) movement of the trunk and lower extremities; and (d) after the addition of scES targeted to facilitate independent, overground standing. We found significant improvements to the cardiac structure (left ventricular mass = 10 ± 2 g, p < 0.001; internal dimension during diastole = 0.1 ± 0.04 cm, p < 0.05; internal dimension during systole = 0.06 ± 0.03 cm, p < 0.05; interventricular septum dimension = 0.04 ± 0.02 cm, p < 0.05), systolic function (ejection fraction = 1 ± 0.4%, p < 0.05; velocity time integral = 2 ± 0.4 cm, p < 0.001; stroke volume = 4.4 ± 1.5 ml, p < 0.01), and diastolic function (mitral valve deceleration time =-32 ± 11 ms, p < 0.05; mitral valve deceleration slope = 50 ± 25 cm s −1 , p < 0.05; isovolumic relaxation time = −6 ± 1.9 ms, p < 0.05) with each subsequent scES intervention. Despite the pilot nature of this study, statistically significant improvements to the cardiac structure, systolic function, and diastolic function demonstrate that scES combined with task-specific interventions led to beneficial cardiac remodeling, which can reverse
Individuals with spinal cord injury develop cardiovascular disease more than age-matched, non-injured cohorts. However, progression of systolic and diastolic dysfunction into cardiovascular disease after spinal cord injury is not well described. We sought to investigate the relationship between systolic and diastolic function in chronic spinal cord injury to describe how biological sex, level, severity, and duration of injury correlate with structural changes in the left ventricle. Individuals with chronic spinal cord injury participated in this study (n = 70). Registered diagnostic cardiac sonographers used cardiac ultrasound to measure dimensions, mass, and systolic and diastolic function of the left ventricle. We found no significant relationship to severity or duration of injury with left ventricle measurements, systolic function outcome, or diastolic function outcome. Moreover, nearly all outcomes measured were within the American Society of Echocardiography-defined healthy range. Similar to noninjured individuals, when indexed by body surface area (BSA) left ventricle mass [-14 (5) g/ m2, p < .01], end diastolic volume [-6 (3) mL/m 2 , p < .05], and end systolic volume [-4 (1) mL/m 2 , p < .01] were significantly decreased in women compared with men. Likewise, diastolic function outcomes significantly worsened with age: E-wave velocity [-5 (2), p < .01], E/ A ratio [-0.23 (0.08), p < .01], and e' velocity [lateral:-1.5 (0.3) cm/s, p < .001; septal:-0.9 (0.2), p < .001] decreased with age while A-wave velocity [5 (1) cm/s, p < .001] and isovolumic relaxation time [6 (3) ms, p < .05] increased with age. Women demonstrated significantly decreased cardiac size and volumes compared with men, but there was no biological relationship to dysfunction. Moreover, individuals were within the range of ASE-defined healthy values with no evidence of systolic or diastolic function and no meaningful relationship to level, severity, or duration of injury. Decreases to left ventricular dimensions and mass seen in spinal cord injury may result from adaptation rather than maladaptive myocardial remodeling, and increased incidence of cardiovascular disease may be related to modifiable risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.