A novel method is presented for controllably merging aqueous microdroplets within segmented flow microfluidic devices. Our approach involves exploiting the difference in hydrodynamic resistance of the continuous phase and the surface tension of the discrete phase through the use of passive structures contained within a microfluidic channel. Rows of pillars separated by distances smaller than the representative droplet dimension are installed within the fluidic network and define passive merging elements or chambers. Initial experiments demonstrate that such a merging element can controllably adjust the distance between adjacent droplets. In a typical scenario, a droplet will enter the chamber, slow down and stop. It will wait and then merge with the succeeding droplets until the surface tension is overwhelmed by the hydraulic pressure. We show that such a merging process is independent of the inter-droplet separation but rather dependent on the droplet size. Moreover, the number of droplets that can be merged at any time is also dependent on the mass flow rate and volume ratio between the droplets and the merging chamber. Finally, we note that the merging of droplet interfaces occurs within both compressing and the decompressing regimes.
Background: Human influenza viruses are known to bind to sialic acid linked α2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection.
It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.
Mitochondrial mRNAs in Trypanosoma brucei undergo extensive insertion and deletion of uridylates that are catalyzed by the RNA editing core complex (RECC) and directed by hundreds of small guide RNAs (gRNAs) that base pair with mRNA. RECC is largely RNA-free, and accessory mitochondrial RNAbinding complex 1 (MRB1) variants serve as scaffolds for the assembly of mRNA-gRNA hybrids and RECC. However, the molecular steps that create higher-order holoenzymes ("editosomes") are unknown. Previously, we identified an RNA editing helicase 2-associated subcomplex (REH2C) and showed that REH2 binds RNA. Here we showed that REH2C is an mRNA-associated ribonucleoprotein (mRNP) subcomplex with editing substrates, intermediates, and products. We isolated this mRNP from mitochondria lacking gRNA-bound RNP (gRNP) subcomplexes and identified REH2-associated cofactors 1 and 2 ( H2 F1 and H2 F2). H2 F1 is an octa-zinc finger protein required for mRNP-gRNP docking, pre-mRNA and RECC loading, and RNP formation with a short synthetic RNA duplex. REH2 and other eukaryotic DEAH/RHA-type helicases share a conserved regulatory C-terminal domain cluster that includes an oligonucleotide-binding fold. Recombinant REH2 and H2 F1 constructs associate in a purified complex in vitro. We propose a model of stepwise editosome assembly that entails controlled docking of mRNP and gRNP modules via specific base pairing between their respective mRNA and gRNA cargo and regulatory REH2 and H2 F1 subunits of the novel mRNP that may control specificity checkpoints in the editing pathway.RNA editing by uridylate insertion and deletion in Trypanosoma brucei modifies over 3000 sites in mitochondrial mRNAs in a gradual process directed by hundreds of small guide RNAs (gRNAs) 4 (1-3). The basic regulatory mechanisms of substrate specificity and developmental control in RNA editing remain unknown. The uridylate changes are catalyzed by the RECC enzyme from 3Ј to 5Ј in discrete blocks. Each gRNA directs editing of one mRNA block. Surprisingly, RECC has little or no RNA and lacks the processivity found in vivo, as established in early purifications of this multiprotein enzyme (4 -6). So, accessory components of the editing apparatus must facilitate substrate recruitment and editing catalysis. There are many non-RECC proteins that affect editing. Most of these proteins (Ͼ25 proteins) are components of the MRB1 complex in T. brucei, also termed gRNA-binding complex (GRBC) in Leishmania, that binds and stabilizes gRNA. MRB1 interacts transiently with the RECC enzyme and mitoribosomes (1,7,8). It has also been found that MRB1 contains all three classes of mRNA in editing: unedited pre-mRNAs, partially edited intermediates, and fully edited transcripts. This indicates that MRB1 complexes serve as scaffolds for the assembly of hybrid substrates and the RECC enzyme (9 -11). Transient addition of RECC to these scaffolds would establish higher-order editing holoenzymes or editosomes. MRB1 was first considered a single dynamic complex, but the reason of its variable compos...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.